The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor

2002 ◽  
Vol 364 (5-6) ◽  
pp. 568-572 ◽  
Author(s):  
Yao Wang ◽  
Fei Wei ◽  
Guohua Luo ◽  
Hao Yu ◽  
Guangsheng Gu
2007 ◽  
Vol 40 (8) ◽  
pp. 2375-2387 ◽  
Author(s):  
Keun Su Kim ◽  
German Cota-Sanchez ◽  
Christopher T Kingston ◽  
Matej Imris ◽  
Benoit Simard ◽  
...  

2012 ◽  
Vol 1451 ◽  
pp. 3-8
Author(s):  
Ricardo P. dos Santos ◽  
Pedro A. Autreto ◽  
Eric Perim ◽  
Gustavo Brunetto ◽  
Douglas S. Galvao

ABSTRACTUnzipping carbon nanotubes (CNTs) is considered one of the most promising approaches for the controlled and large-scale production of graphene nanoribbons (GNR). These structures are considered of great importance for the development of nanoelectronics because of its dimensions and intrinsic nonzero band gap value. Despite many years of investigations some details on the dynamics of the CNT fracture/unzipping processes remain unclear. In this work we have investigated some of these process through molecular dynamics simulations using reactive force fields (ReaxFF), as implemented in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. We considered multi-walled CNTs of different dimensions and chiralities and under induced mechanical stretching. Our preliminary results show that the unzipping mechanisms are highly dependent on CNT chirality. Well-defined and distinct fracture patterns were observed for the different chiralities. Armchair CNTs favor the creation of GNRs with well-defined armchair edges, while zigzag and chiral ones produce GNRs with less defined and defective edges.


2016 ◽  
Vol 852 ◽  
pp. 514-519 ◽  
Author(s):  
Xiao Gang Sun ◽  
Zhi Wen Qiu ◽  
Long Chen ◽  
Man Yuan Cai ◽  
Zhi Peng Pang ◽  
...  

Since the first observation of carbon nanotubes (CNTs) in 1991, their synthesis techniques has been extensively investigated. The chemical vapor deposition (CVD) process have attracted much attention because of both their versatility and easy large scale production for CNTs . This paper is focused on a catalytic CVD-based method for synthesis of whisker multiwalled carbon nanotubes (WMWCNTs). The new type of carbon nanotube is similar to the whisker. The morphology of the WMWCNTs are very different from traditional carbon nanotubes prepared by traditional chemical vapor deposition process. The traditional CNTs were twisted and entangled with each other. These suggested that there are a lot of deficiencies on the CNTs and are difficult to disperse in matrix materials. The as-produced WMWCNTs are very straight and not entangled with each other. The line structure means that WMWCNTs are easily dispersed in matrix materials than traditional CNTs which are twined together. The crystallinity of WMWCNTs increased to 96% which was much higher than traditional CNTs after graphitization treatment at 2800°C.


2002 ◽  
Vol 359 (1-2) ◽  
pp. 109-114 ◽  
Author(s):  
Cheol Jin Lee ◽  
Seung Chul Lyu ◽  
Hyoun-Woo Kim ◽  
Chong-Yun Park ◽  
Cheol-Woong Yang

Sign in / Sign up

Export Citation Format

Share Document