Novel multipulse saturation spectroscopy for quantum yield determination of charge separation in modified photosynthetic reaction centers

1999 ◽  
Vol 306 (5-6) ◽  
pp. 239-248 ◽  
Author(s):  
P. Müller ◽  
G. Hartwich ◽  
A. Ogrodnik ◽  
M.E. Michel-Beyerle
1992 ◽  
Vol 198 (6) ◽  
pp. 653-658 ◽  
Author(s):  
A. Ogrodnik ◽  
T. Langenbacher ◽  
G. Bieser ◽  
J. Siegl ◽  
U. Eberl ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yin Song ◽  
Riley Sechrist ◽  
Hoang H. Nguyen ◽  
William Johnson ◽  
Darius Abramavicius ◽  
...  

AbstractPhotochemical reaction centers are the engines that drive photosynthesis. The reaction center from heliobacteria (HbRC) has been proposed to most closely resemble the common ancestor of photosynthetic reaction centers, motivating a detailed understanding of its structure-function relationship. The recent elucidation of the HbRC crystal structure motivates advanced spectroscopic studies of its excitonic structure and charge separation mechanism. We perform multispectral two-dimensional electronic spectroscopy of the HbRC and corresponding numerical simulations, resolving the electronic structure and testing and refining recent excitonic models. Through extensive examination of the kinetic data by lifetime density analysis and global target analysis, we reveal that charge separation proceeds via a single pathway in which the distinct A0 chlorophyll a pigment is the primary electron acceptor. In addition, we find strong delocalization of the charge separation intermediate. Our findings have general implications for the understanding of photosynthetic charge separation mechanisms, and how they might be tuned to achieve different functional goals.


2021 ◽  
Author(s):  
Yin Song ◽  
Riley Sechrist ◽  
Hoang Huy Nguyen ◽  
William Johnson ◽  
Darius Abramavičius ◽  
...  

<p>Photochemical reaction centers are the engines that drive photosynthesis. The reaction center from heliobacteria (HbRC) has been proposed to most closely resemble the common ancestor of photosynthetic reaction centers, motivating a detailed understanding of its structure-function relationship. The recent elucidation of the HbRC crystal structure motivates advanced spectroscopic studies of its excitonic structure and charge separation mechanism. We perform multispectral two-dimensional electronic spectroscopy of the HbRC and corresponding numerical simulations, resolving the electronic structure and testing and refining recent excitonic models. Through extensive examination of the kinetic data by lifetime density analysis and global target analysis, we reveal that charge separation proceeds via a single pathway in which the distinct A<sub>0 </sub>chlorophyll <i>a</i> pigment is the primary electron acceptor. In addition, we find strong delocalization of the initial excited state and charge separation intermediate. Our findings have general implications for the understanding of photosynthetic charge separation mechanisms, and how they might be tuned to achieve different functional goals.</p>


2018 ◽  
Vol 28 (6) ◽  
pp. 1275-1280
Author(s):  
Kadhim Kh. Hashim ◽  
Shatha Y. Yahyaa ◽  
Asmaa A. Mohmmed Al-Rashidy

2018 ◽  
Vol 197 ◽  
pp. 175-179 ◽  
Author(s):  
Sthanley R. De Lima ◽  
Gustavo J. Pereira ◽  
Djalmir N. Messias ◽  
Acácio A. Andrade ◽  
Elisabete Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document