Hydrogen trapping on non metallic inclusions in cr-mo low alloy steels

1998 ◽  
Vol 40 (7) ◽  
pp. 1073-1086 ◽  
Author(s):  
M Garet ◽  
A.M Brass ◽  
C Haut ◽  
F Guttierez-Solana
2017 ◽  
Vol 36 (4) ◽  
pp. 309-325 ◽  
Author(s):  
Wangzhong Mu ◽  
Pär Göran Jönsson ◽  
Keiji Nakajima

AbstractIntragranular ferrite (IGF), which nucleates from specific inclusion surfaces in low alloy steels, is the desired microstructure to improve mechanical properties of steel such as the toughness. This microstructure is especially important in the coarse grain heat affected zone (CGHAZ) of weldments. The latest review paper focusing on the role of non-metallic inclusions in the IGF formation in steels has been reported by Sarma et al. in 2009 (ISIJ int., 49(2009), 1063–1074). In recent years, large amount of papers have been presented to investigate different issues of this topic. This paper mainly highlights the frontiers of experimental and theoretical investigations on the effects of inclusion characteristics, such as the composition, size distribution and number density, on the IGF formation in low carbon low-alloyed steels, undertaken by the group of Applied Process Metallurgy, KTH Royal Institute of Technology. Related results reported in previous studies are also introduced. Also, plausible future work regarding various items of IGF formation is mentioned in each section. This work aims to give a better control of improving the steel quality during casting and in the heat affected zone (HAZ) of weldment, according to the concept of oxide metallurgy.


2021 ◽  
Vol 179 ◽  
pp. 109150
Author(s):  
Chao Liu ◽  
Xuan Li ◽  
Reynier I. Revilla ◽  
Tong Sun ◽  
Jinbin Zhao ◽  
...  

Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


2020 ◽  
Vol 2020 (10) ◽  
pp. 8-21
Author(s):  
A. G. Kolmakov ◽  
◽  
I. O. Bannykh ◽  
V. I. Antipov ◽  
L. V. Vinogradov ◽  
...  

he basic ideas about the process of introducing cores into protective barriers and the most common core patterns and their location in conventional and sub-caliber small arms bullets are discussed. The materials used for manufacture of cores are analyzed. It is concluded that for mass bullets of increased armor penetration the most rational choice can be considered the use of high-carbon low-alloy steels of a new generation with a natural composite structure and hardness of up to 70 HRC. For specialized armor-piercing bullets, cores made from promising economically-alloyed high-speed steels characterized by a high complex of «hardness—bending strength» are better alternative than ones made of hard alloys or tungsten alloys.


Sign in / Sign up

Export Citation Format

Share Document