Multiattribute decision analysis of desalination plant engineering management options with applications to Saudi Arabia

Desalination ◽  
1979 ◽  
Vol 28 (3) ◽  
pp. 253-282 ◽  
Author(s):  
A.F. Abdul-Fattah ◽  
A.A. Husseiny
2021 ◽  
pp. 128146
Author(s):  
Vishnupriyan Jegadeesan ◽  
Dhanasekaran Arumugam ◽  
Nallapaneni Manoj Kumar ◽  
Shauhrat S. Chopra ◽  
Pachaivannan Partheeban

1984 ◽  
Vol 41 (9) ◽  
pp. 1393-1406 ◽  
Author(s):  
M. C. Healey

This paper reviews the origin and operational definition of the optimum yield (OY) concept and demonstrates how techniques of decision analysis can provide an analytical model for OY. The concept of OY was formalized as the guiding principle of fisheries management in the United States and Canada in 1976. The policies of both countries make it clear that a wide range of biological, economic, and social factors are to be taken into account in determining OY. Confusion exists, however, about precisely which of these factors should determine OY in any fishery and what is their relative importance. Uncertainty also exists about how to take biological, economic, and social factors jointly into account as the concept of OY implies one must. Established biological and economic models in fisheries are not adequate for such an analysis because their focus is single- rather than multi-objective. Operational techniques of decision analysis, such as multiattribute utility analysis, are specifically designed to deal with multiobjective problems like OY. I propose that a simple, linear, utility model be used to assess the optimality of alternative yield strategies in fisheries management. I illustrate the application of the model by assessing OY options in the New England herring (Clupea harengus) fishery and the Skeena River salmon (Oncorhynchus spp.) fishery. The advantages of the model are that it is simple and intuitively appealing, that it permits a wide range of types and qualities of data to be incorporated into the evaluation of management options, that it is amenable to sensitivity analysis, and that it is adaptable to a variety of decision rules.


2021 ◽  
Author(s):  
Mohamed Abd-el-Kader ◽  
Ahmed Elfeky ◽  
Mohamed Saber ◽  
Maged AlHarbi ◽  
abed Alataway

Abstract Flash floods are highly devastating, however there is no effective management for their water in Saudi Arabia, therefore, it is crucial to adopt Rainfall Water Harvesting (RWH) techniques to mitigate the flash floods and manage the available water resources from the infrequent and rare rainfall storms. The goal of this study is to create a potential flood hazard map and a map of suitable locations for RWH in Wadi Nisah, Saudi Arabia for future water management and flood prevention plans and to identify potential areas for rainwater harvesting and dam construction for both a flood mitigation and water harvesting. This research was carried out using a spatiotemporal distributed model based on multi-criteria decision analysis by combining Geographic Information System (GIS), Remote Sensing (RS), and Multi-Criteria Decision-Making tools (MCDM). The flood hazard mapping criteria were elevation, drainage density, slope, direct runoff depth at 50 years return period, Topographic witness index, and Curve Number, according to the Multi-criteria decision analysis, while the criteria for RWH were Slope, Land cover, Stream order, Lineaments density, and Average of annual max-24hr Rainfall. The weight of each criteria was estimated based on Analytical Hierarchy Process (AHP). In multi-criteria decision analysis, 21.55 % of the total area for Wadi Nisah was classified as extremely dangerous and dangerous; 65.29 % of the total area was classified as moderate; and 13.15 % of the total area was classified as safe and very safe in flash flood hazard classes. Only 15% of Wadi Nisah has a very high potentiality for RWH and 27.7%, 57.31% of the basin has a moderate and a low or extremely low potentiality of RWH, respectively. According to the developed RWH potentiality map, two possible dam sites were proposed. The maximum height of the proposed dams, which corresponded to the cross section of dam locations, ranged from 6.2 to 9 meters; the maximum width of dams ranged from 573.48 to 725 meters; the maximum storage capacity of reservoirs, which corresponded to the distribution of topographic conditions in the surrounding area, ranged from 3976104.499 m3 to 4328509.123 m3; and the maximum surface area of reservoirs ranged from 1268372.625 m2 to 1505825.676.14 m2. These results are highly important for the decision makers for not only flash flood mitigation but also water management in the study area.


1995 ◽  
Vol 52 (2-3) ◽  
pp. 283-289 ◽  
Author(s):  
Saleh Alawaji ◽  
Mohammed Salah Smiai ◽  
Shah Rafique ◽  
Byron Stafford

Sign in / Sign up

Export Citation Format

Share Document