scholarly journals Bacterial protein translocase: a unique molecular machine with an army of substrates

FEBS Letters ◽  
2000 ◽  
Vol 476 (1-2) ◽  
pp. 18-21 ◽  
Author(s):  
Anastassios Economou
2001 ◽  
Vol 120 (5) ◽  
pp. A518-A518
Author(s):  
H DALWADI ◽  
B WEI ◽  
M KRONENBERG ◽  
C SUTTON ◽  
J BRAUN

2019 ◽  
Author(s):  
Haoke Zhang ◽  
Lili Du ◽  
Lin Wang ◽  
Junkai Liu ◽  
Qing Wan ◽  
...  

<p>Building molecular machine has long been a dream of scientists as it is expected to revolutionize many aspects of technology and medicine. Implementing the solid-state molecular motion is the prerequisite for a practical molecular machine. However, few works on solid-state molecular motion have been reported and it is almost impossible to “see” the motion even if it happens. Here the light-driven molecular motion in solid state is discovered in two non-conjugated molecules <i>s</i>-DPE and <i>s</i>-DPE-TM, resulting in the formation of excited-state though-space complex (ESTSC). Meanwhile, the newly formed ESTSC generates an abnormal visible emission which is termed as clusteroluminescence. Notably, the original packing structure can recover from ESTSC when the light source is removed. These processes have been confirmed by time-resolved spectroscopy and quantum mechanics calculation. This work provides a new strategy to manipulate and “see” solid-state molecular motion and gains new insights into the mechanistic picture of clusteroluminescence.<br></p>


2000 ◽  
Author(s):  
Arvydas Tamulis ◽  
Jelena Tamuliene ◽  
Mindaugas L. Balevicius ◽  
Jean-Michel Nunzi

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiqing Du ◽  
Marie-Kristin von Wrisberg ◽  
Burak Gulen ◽  
Matthias Stahl ◽  
Christian Pett ◽  
...  

AbstractLegionella pneumophila infects eukaryotic cells by forming a replicative organelle – the Legionella containing vacuole. During this process, the bacterial protein DrrA/SidM is secreted and manipulates the activity and post-translational modification (PTM) states of the vesicular trafficking regulator Rab1. As a result, Rab1 is modified with an adenosine monophosphate (AMP), and this process is referred to as AMPylation. Here, we use a chemical approach to stabilise low-affinity Rab:DrrA complexes in a site-specific manner to gain insight into the molecular basis of the interaction between the Rab protein and the AMPylation domain of DrrA. The crystal structure of the Rab:DrrA complex reveals a previously unknown non-conventional Rab-binding site (NC-RBS). Biochemical characterisation demonstrates allosteric stimulation of the AMPylation activity of DrrA via Rab binding to the NC-RBS. We speculate that allosteric control of DrrA could in principle prevent random and potentially cytotoxic AMPylation in the host, thereby perhaps ensuring efficient infection by Legionella.


Sign in / Sign up

Export Citation Format

Share Document