scholarly journals AMP-activated protein kinase counteracted the inhibitory effect of glucose on the phosphoenolpyruvate carboxykinase gene expression in rat hepatocytes

FEBS Letters ◽  
2000 ◽  
Vol 481 (3) ◽  
pp. 209-212 ◽  
Author(s):  
Aurélie Hubert ◽  
Annie Husson ◽  
Arlette Chédeville ◽  
Alain Lavoinne
2000 ◽  
Vol 20 (18) ◽  
pp. 6704-6711 ◽  
Author(s):  
Angela Woods ◽  
Dalila Azzout-Marniche ◽  
Marc Foretz ◽  
Silvie C. Stein ◽  
Patricia Lemarchand ◽  
...  

ABSTRACT In the liver, glucose induces the expression of a number of genes involved in glucose and lipid metabolism, e.g., those encoding L-type pyruvate kinase and fatty acid synthase. Recent evidence has indicated a role for the AMP-activated protein kinase (AMPK) in the inhibition of glucose-activated gene expression in hepatocytes. It remains unclear, however, whether AMPK is involved in the glucose induction of these genes. In order to study further the role of AMPK in regulating gene expression, we have generated two mutant forms of AMPK. One of these (α1312) acts as a constitutively active kinase, while the other (α1DN) acts as a dominant negative inhibitor of endogenous AMPK. We have used adenovirus-mediated gene transfer to express these mutants in primary rat hepatocytes in culture in order to determine their effect on AMPK activity and the transcription of glucose-activated genes. Expression of α1312 increased AMPK activity in hepatocytes and blocked completely the induction of a number of glucose-activated genes in response to 25 mM glucose. This effect is similar to that observed following activation of AMPK by 5-amino-imidazolecarboxamide riboside. Expression of α1DN markedly inhibited both basal and stimulated activity of endogenous AMPK but had no effect on the transcription of glucose-activated genes. Our results suggest that AMPK is involved in the inhibition of glucose-activated gene expression but not in the induction pathway. This study demonstrates that the two mutants we have described will provide valuable tools for studying the wider physiological role of AMPK.


1993 ◽  
Vol 293 (1) ◽  
pp. 119-124 ◽  
Author(s):  
C Postic ◽  
R Burcelin ◽  
F Rencurel ◽  
J P Pegorier ◽  
M Loizeau ◽  
...  

The glucose transporter GLUT2 is expressed predominantly in the liver. Previous studies have shown that glucose increases GLUT2 mRNA concentration in primary cultures of rat hepatocytes. Since insulin controls the glucose metabolism in the liver, it could be involved in the regulation of GLUT2 gene expression. In vivo, hyperinsulinaemia induced a transient inhibitory effect on liver GLUT2 gene expression, the maximal inhibition of GLUT2 mRNA concentration (93 +/- 6%) being observed after 6 h. When hyperglycaemia was associated with hyperinsulinaemia, the decrease in liver GLUT2 mRNA concentration was partially prevented. The respective effects of glucose and insulin were studied in vitro by primary culture of rat hepatocytes. Insulin alone exerted a transient inhibitory effect on GLUT2 mRNA concentration. When insulin and glucose (10-20 mM) were associated, the stimulatory effect of glucose on GLUT2 gene expression was predominant. In conclusion, the present study shows that GLUT2 mRNA concentration was conversely regulated by insulin and glucose, both in vitro and in vivo.


1985 ◽  
pp. 347-368 ◽  
Author(s):  
David S. Loose ◽  
Anthony Wynshaw-Boris ◽  
Herman M. Meisner ◽  
Yaacov Hod ◽  
Richard W. Hanson

Sign in / Sign up

Export Citation Format

Share Document