scholarly journals Novel components and enzymatic activities of the human erythrocyte plasma membrane calcium pump

FEBS Letters ◽  
1997 ◽  
Vol 412 (3) ◽  
pp. 592-596 ◽  
Author(s):  
Rosetta N Reusch ◽  
Ruiping Huang ◽  
Danuta Kosk-Kosicka
Bone ◽  
1995 ◽  
Vol 16 (3) ◽  
pp. 393
Author(s):  
Laura Soldati ◽  
Giuseppe Vezzoli ◽  
Sergio Salardi ◽  
Barry R. Barber ◽  
Tiziana Azzani ◽  
...  

1996 ◽  
Vol 271 (3) ◽  
pp. C736-C741 ◽  
Author(s):  
W. Xu ◽  
C. Gatto ◽  
M. A. Milanick

Exchange inhibitory peptide (XIP; RRLLFYKYVYKRYRAGKQRG) is the shortest peptide that inhibits the plasma membrane Ca pump at high Ca (A. Enyedi, T. Vorherr, P. James, D. J. McCormick, A. G. Filoteo, E. Carafoli, and J. T. Penniston, J. Biol. Chem. 264: 12313-12321, 1989). Sulfosuccinimidyl acetate (SNA)-modified XIP does not inhibit the Ca pump; SNA neutralizes the positive charge on Lys at positions 7, 11, and 17. Peptide 2CK-XIP (RRLLFYRYVYRCYCAGRQKG) inhibits the pump, but the iodoacetamido-modified peptide does not inhibit. Three peptide analogues, in which 7, 11, and 17 were Ala, Cys, or Lys, inhibited about as well as XIP. SNA modification of these analogues (each with 1 Lys) did not inhibit. SNA modification of 2CK-XIP results in a peptide that does not inhibit; thus position 19 is important. Our results suggest that it is critical that position 19 be positively charged, that positions 7, 11, and 17 are important contact points between XIP and the Ca pump (with at least one positively charged), and that, whereas it is not essential that residues 12 and 14 be positive, they cannot be negative.


2011 ◽  
Vol 287 (3) ◽  
pp. 1823-1836 ◽  
Author(s):  
Parini Mankad ◽  
Andrew James ◽  
Ajith K. Siriwardena ◽  
Austin C. Elliott ◽  
Jason I. E. Bruce

Sign in / Sign up

Export Citation Format

Share Document