Positive charge modifications alter the ability of XIP to inhibit the plasma membrane calcium pump

1996 ◽  
Vol 271 (3) ◽  
pp. C736-C741 ◽  
Author(s):  
W. Xu ◽  
C. Gatto ◽  
M. A. Milanick

Exchange inhibitory peptide (XIP; RRLLFYKYVYKRYRAGKQRG) is the shortest peptide that inhibits the plasma membrane Ca pump at high Ca (A. Enyedi, T. Vorherr, P. James, D. J. McCormick, A. G. Filoteo, E. Carafoli, and J. T. Penniston, J. Biol. Chem. 264: 12313-12321, 1989). Sulfosuccinimidyl acetate (SNA)-modified XIP does not inhibit the Ca pump; SNA neutralizes the positive charge on Lys at positions 7, 11, and 17. Peptide 2CK-XIP (RRLLFYRYVYRCYCAGRQKG) inhibits the pump, but the iodoacetamido-modified peptide does not inhibit. Three peptide analogues, in which 7, 11, and 17 were Ala, Cys, or Lys, inhibited about as well as XIP. SNA modification of these analogues (each with 1 Lys) did not inhibit. SNA modification of 2CK-XIP results in a peptide that does not inhibit; thus position 19 is important. Our results suggest that it is critical that position 19 be positively charged, that positions 7, 11, and 17 are important contact points between XIP and the Ca pump (with at least one positively charged), and that, whereas it is not essential that residues 12 and 14 be positive, they cannot be negative.

1993 ◽  
Vol 12 (5) ◽  
pp. 435-440 ◽  
Author(s):  
FAZLUL H. SARKAR ◽  
DANIEL E. BALL ◽  
WAYNE TSANG ◽  
YI-WEI LI ◽  
TUAN H. KUO

2011 ◽  
Vol 287 (3) ◽  
pp. 1823-1836 ◽  
Author(s):  
Parini Mankad ◽  
Andrew James ◽  
Ajith K. Siriwardena ◽  
Austin C. Elliott ◽  
Jason I. E. Bruce

1993 ◽  
Vol 264 (6) ◽  
pp. C1577-C1586 ◽  
Author(s):  
C. Gatto ◽  
M. A. Milanick

This paper addresses the mechanism of inhibition of the plasma membrane Ca pump by fluorescein analogues and their isothiocyanate derivatives. Eosin (i.e., tetrabromofluorescein) was found to be one of the most potent reversible inhibitors of the erythrocyte Ca pump [half-maximal inhibitory concentration (IC50) < 0.2 microM]; fluorescein itself was about four orders of magnitude less potent (IC50 approximately 1,000 microM). Eosin decreased the maximum influx and thus did not compete with ATP for the Ca pump. Irreversible inhibition produced by the isothiocyanate analogues of eosin and fluorescein [eosin 5-isothiocyanate (EITC) and fluorescein 5-isothiocyanate (FITC), respectively] was also studied. While EITC bound reversibly at the eosin site, two results suggest that EITC does not react covalently at this site: 1) eosin did not alter the time course of the EITC irreversible reaction, and 2) the concentration dependence for reversible EITC inhibition was different from the concentration dependence for irreversible EITC inhibition. ATP did slow the rate of inactivation of both EITC and FITC consistent with the idea that EITC and FITC bind to the ATP site. Our results are consistent with eosin and ATP binding to separate sites and EITC reacting covalently at the ATP site, but not the eosin site.


Sign in / Sign up

Export Citation Format

Share Document