scholarly journals Urokinase plasminogen activator induces smooth muscle cell migration: key role of growth factor-like domain

FEBS Letters ◽  
1997 ◽  
Vol 414 (2) ◽  
pp. 471-474 ◽  
2010 ◽  
Vol 107 (6) ◽  
pp. 787-799 ◽  
Author(s):  
Takashi Ashino ◽  
Varadarajan Sudhahar ◽  
Norifumi Urao ◽  
Jin Oshikawa ◽  
Gin-Fu Chen ◽  
...  

2006 ◽  
Vol 59 (6) ◽  
pp. 778-783 ◽  
Author(s):  
Jill V Narron ◽  
Tamara D Stoops ◽  
Kurt Barringhaus ◽  
Martin Matsumura ◽  
Allen D Everett

2014 ◽  
Vol 306 (8) ◽  
pp. C753-C761 ◽  
Author(s):  
Rachel A. Cleary ◽  
Ruping Wang ◽  
Omar Waqar ◽  
Harold A. Singer ◽  
Dale D. Tang

c-Abl is a nonreceptor protein tyrosine kinase that has a role in regulating smooth muscle cell proliferation and contraction. The role of c-Abl in smooth muscle cell migration has not been investigated. In the present study, c-Abl was found in the leading edge of smooth muscle cells. Knockdown of c-Abl by RNA interference attenuated smooth muscle cell motility as evidenced by time-lapse microscopy. Furthermore, the actin-associated proteins cortactin and profilin-1 (Pfn-1) have been implicated in cell migration. In this study, cell adhesion induced cortactin phosphorylation at Tyr-421, an indication of cortactin activation. Phospho-cortactin and Pfn-1 were also found in the cell edge. Pfn-1 directly interacted with cortactin in vitro. Silencing of c-Abl attenuated adhesion-induced cortactin phosphorylation and Pfn-1 localization in the cell edge. To assess the role of cortactin/Pfn-1 coupling, we developed a cell-permeable peptide. Treatment with the peptide inhibited the interaction of cortactin with Pfn-1 without affecting cortactin phosphorylation. Moreover, treatment with the peptide impaired the recruitment of Pfn-1 to the leading edge and cell migration. Finally, β1-integrin was required for the recruitment of c-Abl to the cell edge. Inhibition of actin dynamics impaired the spatial distribution of c-Abl. These results suggest that β1-integrin may recruit c-Abl to the leading cell edge, which may regulate cortactin phosphorylation in response to cell adhesion. Phosphorylated cortactin may facilitate the recruitment of Pfn-1 to the cell edge, which promotes localized actin polymerization, leading edge formation, and cell movement. Conversely, actin dynamics may strengthen the recruitment of c-Abl to the leading edge.


1997 ◽  
Vol 25 (6) ◽  
pp. 1061-1069 ◽  
Author(s):  
Hiroyuki Itoh ◽  
Peter R. Nelson ◽  
Leila Mureebe ◽  
Arie Horowitz ◽  
K.Craig Kent

Sign in / Sign up

Export Citation Format

Share Document