scholarly journals In vitro interaction of the carboxy-terminal domain of lamin A with actin

FEBS Letters ◽  
1998 ◽  
Vol 425 (3) ◽  
pp. 485-489 ◽  
Author(s):  
A.Marie-Josée Sasseville ◽  
Yves Langelier
2001 ◽  
Vol 21 (23) ◽  
pp. 7944-7955 ◽  
Author(s):  
Susanne M. Bailer ◽  
Carolin Balduf ◽  
Ed Hurt

ABSTRACT Nucleoporin Nsp1p, which has four predicted coiled-coil regions (coils 1 to 4) in the essential carboxy-terminal domain, is unique in that it is part of two distinct nuclear pore complex (NPC) subcomplexes, Nsp1p-Nup57p-Nup49p-Nic96p and Nsp1p-Nup82p-Nup159p. As shown by in vitro reconstitution, coiled-coil region 2 (residues 673 to 738) is sufficient to form heterotrimeric core complexes and can bind either Nup57p or Nup82p. Accordingly, interaction of Nup82p with Nsp1p coil 2 is competed by excess Nup57p. Strikingly, coil 3 and 4 mutants are still assembled into the core Nsp1p-Nup57p-Nup49p complex but no longer associate with Nic96p. Consistently, the Nsp1p-Nup57p-Nup49p core complex dissociates from the nuclear pores in nsp1coil 3 and 4 mutant cells, and as a consequence, defects in nuclear protein import are observed. Finally, the nsp1-L640Stemperature-sensitive mutation, which maps in coil 1, leads to a strong nuclear mRNA export defect. Thus, distinct coiled-coil regions within Nsp1p-C have separate functions that are related to the assembly of different NPC subcomplexes, nucleocytoplasmic transport, and incorporation into the nuclear pores.


2000 ◽  
Vol 20 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Christine R. Rodriguez ◽  
Eun-Jung Cho ◽  
Michael-C. Keogh ◽  
Claire L. Moore ◽  
Arno L. Greenleaf ◽  
...  

ABSTRACT The cotranscriptional placement of the 7-methylguanosine cap on pre-mRNA is mediated by recruitment of capping enzyme to the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II. Immunoblotting suggests that the capping enzyme guanylyltransferase (Ceg1) is stabilized in vivo by its interaction with the CTD and that serine 5, the major site of phosphorylation within the CTD heptamer consensus YSPTSPS, is particularly important. We sought to identify the CTD kinase responsible for capping enzyme targeting. The candidate kinases Kin28-Ccl1, CTDK1, and Srb10-Srb11 can each phosphorylate a glutathione S-transferase–CTD fusion protein such that capping enzyme can bind in vitro. However, kin28 mutant alleles cause reduced Ceg1 levels in vivo and exhibit genetic interactions with a mutant ceg1 allele, whilesrb10 or ctk1 deletions do not. Therefore, only the TFIIH-associated CTD kinase Kin28 appears necessary for proper capping enzyme targeting in vivo. Interestingly, levels of the polyadenylation factor Pta1 are also reduced in kin28 mutants, while several other polyadenylation factors remain stable. Pta1 in yeast extracts binds specifically to the phosphorylated CTD, suggesting that this interaction may mediate coupling of polyadenylation and transcription.


2008 ◽  
Vol 9 (1) ◽  
pp. 52 ◽  
Author(s):  
Mahboob Ul-Hussain ◽  
Georg Zoidl ◽  
Jan Klooster ◽  
Maarten Kamermans ◽  
Rolf Dermietzel

Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1850-1852 ◽  
Author(s):  
Atsushi Oda ◽  
Hiroshi Wakao ◽  
Hiroyoshi Fujita

Truncation of signal transducer and activator of transcription (STAT) 5 at the carboxy-terminal domain, either by genetic engineering or by proteolytic cleavage, results in generation of dominant-negative forms. A nuclear serine protease expressed in the myeloid precursor cells is known to mediate this cleavage, but other proteases responsible for this reaction were unknown. We found that calpain, a ubiquitously expressed cysteine protease, also trims STAT5 in vivo and in vitro, within the carboxy-terminal domain. Nuclear element is not necessary for calpain-mediated STAT5 cleavage, since this process occurs in platelets. We also found that STAT3 is a substrate for calpain in vivo and in vitro, indicating that calpain-mediated cleavage is a common feature of STAT3 and STAT5. Thus, our study reveals a novel pathway for posttranslational modification of STAT3 and STAT5.


2008 ◽  
Vol 190 (7) ◽  
pp. 2279-2285 ◽  
Author(s):  
Georgeta N. Basturea ◽  
Maria D. Bodero ◽  
Mario E. Moreno ◽  
George P. Munson

ABSTRACT Most members of the AraC/XylS family contain a conserved carboxy-terminal DNA binding domain and a less conserved amino-terminal domain involved in binding small-molecule effectors and dimerization. However, there is no evidence that Rns, a regulator of enterotoxigenic Escherichia coli virulence genes, responds to an effector ligand, and in this study we found that the amino-terminal domain of Rns does not form homodimers in vivo. Exposure of Rns to the chemical cross-linker glutaraldehyde revealed that the full-length protein is also a monomer in vitro. Nevertheless, deletion analysis of Rns demonstrated that the first 60 amino acids of the protein are essential for the activation and repression of Rns-regulated promoters in vivo. Amino-terminal truncation of Rns abolished DNA binding in vitro, and two randomly generated mutations, I14T and N16D, that independently abolished Rns autoregulation were isolated. Further analysis of these mutations revealed that they have disparate effects at other Rns-regulated promoters and suggest that they may be involved in an interaction with the carboxy-terminal domain of Rns. Thus, evolution may have preserved the amino terminus of Rns because it is essential for the regulator's activity even though it apparently lacks the two functions, dimerization and ligand binding, usually associated with the amino-terminal domains of AraC/XylS family members.


2004 ◽  
Vol 24 (16) ◽  
pp. 6947-6956 ◽  
Author(s):  
Annie Moisan ◽  
Chantal Larochelle ◽  
Benoît Guillemette ◽  
Luc Gaudreau

ABSTRACT A high incidence of breast and ovarian cancers has been linked to mutations in the BRCA1 gene. BRCA1 has been shown to be involved in both positive and negative regulation of gene activity as well as in numerous other processes such as DNA repair and cell cycle regulation. Since modulation of the RNA polymerase II carboxy-terminal domain (CTD) phosphorylation levels could constitute an interface to all these functions, we wanted to directly test the possibility that BRCA1 might regulate the phosphorylation state of the CTD. We have shown that the BRCA1 C-terminal region can negatively modulate phosphorylation levels of the RNA polymerase II CTD by the Cdk-activating kinase (CAK) in vitro. Interestingly, the BRCA1 C-terminal region can directly interact with CAK and inhibit CAK activity by competing with ATP. Finally, we demonstrated that full-length BRCA1 can inhibit CTD phosphorylation when introduced in the BRCA1−/− HCC1937 cell line. Our results suggest that BRCA1 could play its ascribed roles, at least in part, by modulating CTD kinase components.


2000 ◽  
Vol 14 (6) ◽  
pp. 731-739
Author(s):  
Randolph S. Watnick ◽  
Stephanie Chiyoko Herring ◽  
Arthur G. Palmer ◽  
Max E. Gottesman

The amino-terminal arginine-rich motif of the phage HK022 Nun protein binds phage λ nascent mRNA transcripts while the carboxy-terminal domain binds RNA polymerase and arrests transcription. The role of specific residues in the carboxy-terminal domain in transcription termination were investigated by mutagenesis, in vitro and in vivo functional assays, and NMR spectroscopy. Coordination of zinc to three histidine residues in the carboxy-terminus inhibited RNA binding by the amino-terminal domain; however, only two of these histidines were required for transcription arrest. These results suggest that additional zinc-coordinating residues are supplied by RNA polymerase in the context of the Nun–RNA polymerase complex. Substitution of the penultimate carboxy-terminal tryptophan residue with alanine or leucine blocks transcription arrest, whereas a tyrosine substitution is innocuous. Wild-type Nun fails to arrest transcription on single-stranded templates. These results suggest that Nun inhibition of transcription elongation is due in part to interactions between the carboxy-terminal tryptophan of Nun and double-stranded DNA, possibly by intercalation. A model for the termination activity of Nun is developed on the basis of these data.


Sign in / Sign up

Export Citation Format

Share Document