Sterol 27-hydroxylase is a tissue specific regulator of cholesterol and bile acid synthesis

2000 ◽  
Vol 118 (4) ◽  
pp. A999 ◽  
Author(s):  
Elizabeth A. Hall ◽  
Zdravko R. Vlahcevic ◽  
Phillip B. Hylemon ◽  
Darrell Mallonee ◽  
William M. Pandak
Hepatology ◽  
2012 ◽  
Vol 56 (3) ◽  
pp. 1034-1043 ◽  
Author(s):  
Bo Kong ◽  
Li Wang ◽  
John Y.L. Chiang ◽  
Youcai Zhang ◽  
Curtis D. Klaassen ◽  
...  

Author(s):  
Caitlin Vonderohe ◽  
Gregory Guthrie ◽  
Barbara Stoll ◽  
Shaji Chacko ◽  
Harry Dawson ◽  
...  

Background & Aims: The tissue specific molecular mechanisms involved in perinatal liver and intestinal FXR-FGF19 signaling are poorly defined. Our aim was to establish how gestational age and feeding status affect bile acid synthesis pathway, bile acid pool size, ileal response to bile acid stimulation, genes involved in bile acid-FXR-FGF19 signaling and plasma FGF19 in neonatal pigs. Methods Term (n=23) and preterm (n=33) pigs were born via cesarean section at 100% and 90% gestation, respectively. Plasma FGF19, hepatic bile acid and oxysterol profiles, and FXR target gene expression was assessed in pigs at birth and after a bolus feed on day 3 of life. Pig ileal tissue explants were used to measure signaling response to bile acids. Results Preterm pigs had smaller, more hydrophobic bile acid pools, lower plasma FGF19, and blunted FXR-mediated ileal response to bile acid stimulation than term pigs. GATA-4 expression was higher in jejunum than ileum, and was higher in preterm than term pig ileum. Hepatic oxysterol analysis suggested dominance of the alternative pathway of bile acid synthesis in neonates, regardless of gestational age and persists in preterm pigs after feeding on day 3. Conclusion These results highlight the tissue-specific molecular basis for the immature enterohepatic bile acid signaling via FXR-FGF19 in preterm pigs and may have implications for disturbances of bile acid homeostasis and metabolism in preterm infants.


2012 ◽  
Vol 32 (3) ◽  
pp. 810-814 ◽  
Author(s):  
Lena Persson ◽  
Peter Henriksson ◽  
Eli Westerlund ◽  
Outi Hovatta ◽  
Bo Angelin ◽  
...  

Author(s):  
Akihiko Kimura ◽  
Tatsuki Mizuochi ◽  
Hajime Takei ◽  
Akira Ohtake ◽  
Jun Mori ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 335-353
Author(s):  
Evette B. M. Hillman ◽  
Sjoerd Rijpkema ◽  
Danielle Carson ◽  
Ramesh P. Arasaradnam ◽  
Elizabeth M. H. Wellington ◽  
...  

Bile acid diarrhoea (BAD) is a widespread gastrointestinal disease that is often misdiagnosed as irritable bowel syndrome and is estimated to affect 1% of the United Kingdom (UK) population alone. BAD is associated with excessive bile acid synthesis secondary to a gastrointestinal or idiopathic disorder (also known as primary BAD). Current licensed treatment in the UK has undesirable effects and has been the same since BAD was first discovered in the 1960s. Bacteria are essential in transforming primary bile acids into secondary bile acids. The profile of an individual’s bile acid pool is central in bile acid homeostasis as bile acids regulate their own synthesis. Therefore, microbiome dysbiosis incurred through changes in diet, stress levels and the introduction of antibiotics may contribute to or be the cause of primary BAD. This literature review focuses on primary BAD, providing an overview of bile acid metabolism, the role of the human gut microbiome in BAD and the potential options for therapeutic intervention in primary BAD through manipulation of the microbiome.


Sign in / Sign up

Export Citation Format

Share Document