scholarly journals Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium

2005 ◽  
Vol 389 (2) ◽  
pp. 527-539 ◽  
Author(s):  
Shasi V. Kalivendi ◽  
Eugene A. Konorev ◽  
Sonya Cunningham ◽  
Sravan K. Vanamala ◽  
Eugene H. Kaji ◽  
...  

Doxorubicin (DOX), a widely used antitumour drug, causes dose-dependent cardiotoxicity. Cardiac mitochondria represent a critical target organelle of toxicity during DOX chemotherapy. Proposed mechanisms include generation of ROS (reactive oxygen species) and disturbances in mitochondrial calcium homoeostasis. In the present study, we probed the mechanistic link between mitochondrial ROS and calcium in the embryonic rat heart-derived H9c2 cell line and in adult rat cardiomyocytes. The results show that DOX stimulates calcium/calcineurin-dependent activation of the transcription factor NFAT (nuclear factor of activated T-lymphocytes). Pre-treatment of cells with an intracellular calcium chelator abrogated DOX-induced nuclear NFAT translocation, Fas L (Fas ligand) expression and caspase activation, as did pre-treatment of cells with a mitochondria-targeted antioxidant, Mito-Q (a mitochondria-targeted antioxidant consisting of a mixture of mitoquinol and mitoquinone), or with adenoviral-over-expressed antioxidant enzymes. Treatment with GPx-1 (glutathione peroxidase 1), MnSOD (manganese superoxide dismutase) or a peptide inhibitor of NFAT also inhibited DOX-induced nuclear NFAT translocation. Pre-treatment of cells with a Fas L neutralizing antibody abrogated DOX-induced caspase-8- and -3-like activities during the initial stages of apoptosis. We conclude that mitochondria-derived ROS and calcium play a key role in stimulating DOX-induced ‘intrinsic and extrinsic forms’ of apoptosis in cardiac cells with Fas L expression via the NFAT signalling mechanism. Implications of ROS- and calcium-dependent NFAT signalling in DOX-induced apoptosis are discussed.

2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

2015 ◽  
Vol 89 (10) ◽  
pp. 1871-1880 ◽  
Author(s):  
Kyung Jong Won ◽  
Kang Pa Lee ◽  
Suyeol Yu ◽  
Donghyen Lee ◽  
Dong-Youb Lee ◽  
...  

Blood ◽  
1984 ◽  
Vol 64 (5) ◽  
pp. 994-999
Author(s):  
Y Niwa ◽  
T Sakane ◽  
Y Miyachi ◽  
T Kanoh ◽  
K Somiya

We assessed the generation of reactive oxygen species (ROS: O2-, H2O2, OH . , chemiluminescence) by neutrophils and monocytes from six patients with infectious mononucleosis, ten patients with other viral diseases, and ten normal controls. Neutrophils from infectious mononucleosis patients showed markedly decreased generation of all reactive oxygen species, compared with the two control groups; this abnormality persisted for four to eight weeks after disease onset. Monocytes from these patients generated normal levels of ROS. Normal neutrophils incubated with T lymphocytes from infectious mononucleosis patients generated significantly less of each ROS than did those incubated with T cells from either control group. T cell-mediated suppression of ROS generation required both OKT4+ cells from infectious mononucleosis patients and OKT8+ cells from either patients or normals. We conclude that the generation of reaction oxygen species in neutrophils is suppressed in patients with infectious mononucleosis, at least in part, by interacting subsets of T lymphocytes.


2007 ◽  
Vol 97 (01) ◽  
pp. 88-98 ◽  
Author(s):  
Christina Barja-Fidalgo ◽  
Vany Nascimento-Silva ◽  
Maria Arruda ◽  
Iolanda Fierro

SummaryLipoxins and their aspirin-triggered carbon-15 epimers have emerged as mediators of key events in endogenous anti-inflammation and resolution. However, the implication of these novel lipid mediators on cardiovascular diseases such as hypertension, atherosclerosis, and heart failure has not been investigated. One of the major features shared by these pathological conditions is the increased production of reactive oxygen species (ROS) generated by vascular NAD(P)H oxidase activation. In this study, we have examined whether an aspirin-triggered lipoxin A4 analog (ATL-1) modulates ROS generation in endothelial cells (EC). Pre-treatment of EC with ATL-1 (1–100 nM) completely blocked ROS production triggered by different agents, as assessed by dihydrorhodamine 123 and hydroethidine. Furthermore, ATL-1 inhibited the phosphorylation and translocation of the cytosplamic NAD(P)H oxidase subunit p47phox to the cell membrane as well as NAD(P)H oxidase activity. Western blot and immunofluorescence microscopy analyses showed that ATL-1 (100 nM) impaired the redox-sensitive activation of the transcriptional factor NF-κB, a critical step in several events associated to vascular pathologies. These results demonstrate that ATL-1 suppresses NAD(P)H oxidase-mediated ROS generation in EC, strongly indicating that lipoxins may play a protective role against the development and progression of cardiovascular diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yi-Jen Peng ◽  
Ching-Tsung Peng ◽  
Yi-Hsuan Lin ◽  
Gu-Jiun Lin ◽  
Shing-Hwa Huang ◽  
...  

Purpose. Interleukin-1α (IL-1α) is a potent cytokine that plays a role in inflammatory arthritis and bone loss. Decoy receptor 3 (DCR3) is an immune modulator of monocytes and macrophages. The aim of this study was to investigate the mechanism of DCR3 in IL-1α-induced osteoclastogenesis. Methods. We treated murine macrophages with DCR3 during receptor activator of nuclear factor kappa Β ligand- (RANKL-) plus IL-1α-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed using a pit formation assay. The mechanisms of inhibition were studied by biochemical analyses, including RT-PCR, immunofluorescent staining, flow cytometry, an apoptosis assay, immunoblotting, and ELISA. Results. DCR3 suppresses IL-1α-induced osteoclastogenesis in both primary murine bone marrow-derived macrophages (BMM) and RAW264.7 cells as it inhibits bone resorption. DCR3 induces RANKL-treated osteoclast precursor cells to express IL-1α, secretory IL-1ra (sIL-1ra), intracellular IL-1ra (icIL-1ra), reactive oxygen species (ROS), and Fas ligand and to activate IL-1α-induced interleukin-1 receptor-associated kinase 4 (IRAK4). The suppression of DCR3 during RANKL- or IL-1α-induced osteoclastogenesis may be due to the abundant secretion of IL-1ra, accumulation of ROS, and expression of Fas ligand in apoptotic osteoclast precursor cells. Conclusions. We concluded that there is an inhibitory effect of DCR3 on osteoclastogenesis via ROS accumulation and ROS-induced Fas ligand, IL-1α, and IL-1ra expression. Our results suggested that the upregulation of DCR3 in preosteoclasts might be a therapeutic target in inflammatory IL-1α-induced bone resorption.


Sign in / Sign up

Export Citation Format

Share Document