512 The Transient Receptor Potential (Trp) Ion Channels TRPA1 and TRPV4 Mediate Inflammatory Pain in the Pancreas

2008 ◽  
Vol 134 (4) ◽  
pp. A-71-A-72 ◽  
Author(s):  
Eugene P. Ceppa ◽  
Fiore Cattaruzza ◽  
Silvia Amadesi ◽  
Natalya Vaksman ◽  
Eileen Grady ◽  
...  
Scientifica ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Nelson S. Yee ◽  
Ada S. Chan ◽  
Julian D. Yee ◽  
Rosemary K. Yee

Transient receptor potential (TRP) ion channels are essential for normal functions and health by acting as molecular sensors and transducing various stimuli into cellular and physiological responses. Growing evidence has revealed that TRP ion channels play important roles in a wide range of human diseases, including malignancies. In light of recent discoveries, it has been found that TRP melastatin-subfamily members, TRPM7 and TRPM8, are required for normal and cancerous development of exocrine pancreas. We are currently investigating the mechanisms which mediate the functional roles of TRPM7 and TRPM8 and attempting to develop these ion channels as clinical biomarkers and therapeutic targets for achieving the goal of personalized therapy in pancreatic cancer.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Oxana Yu. Kytikova ◽  
Tatyana P. Novgorodtseva ◽  
Yulia K. Denisenko ◽  
Marina V. Antonyuk ◽  
Tatyana A. Gvozdenko

Asthma is a chronic heterogeneous disease characterized by chronic inflammation and bronchial hyperreactivity. Neurogenic inflammation is one of the important causes of hyperreactivity. Dysfunction of transient receptor potential (TRP) ion channels underlies the development of neurogenic inflammation, bronchial hyperreactivity and respiratory symptoms of asthma such as bronchospasm and cough. TRP channels are expressed in the respiratory tract. Their activation is mediated by endogenous and exogenous factors involved in the pathogenesis of asthma. The study of functioning and regulation of TRP channels is relevant, as they could be important therapeutic targets for asthma. The aim of the review is to summarize modern ideas about the mechanisms of functioning and regulation of members of the TRP channel superfamily, the role of which in lung pathology and physiology are the best studied.


Author(s):  
Florence Lefranc

Among the most biologically, thus clinically, aggressive primary brain tumors are found malignant gliomas. Despite recent advances in adjuvant therapies, which include targeted and immunotherapies, after surgery and radio/chemotherapy, the tumor is recurrent and always lethal. Malignant gliomas also contain a pool of initiating stem cells that are highly invasive and resistant to conventional treatment. Ion channels and transporters are markedly involved in cancer cell biology, including glioma cell biology. Transient receptor potential (TRP) ion channels are calcium-permeable channels implicated in Ca2+ changes in multiple cellular compartments by modulating the driving force for Ca2+ entry. Recent scientific reports have shown that these channels contribute to the increase in glioblastoma aggressiveness, with glioblastoma representing the ultimate level of glioma malignancy. The current review focuses on each type of TRP ion channel potentially involved in malignant glioma cell death, with the ultimate goal of identifying new therapeutic targets to clinically combat malignant gliomas. It thus appears that cannabidiol targeting the TRPV2 type could be such a potential target.


2021 ◽  
Vol 196 (4) ◽  
Author(s):  
Yen Lai ◽  
Wolfgang Bäumer ◽  
Constanza Meneses ◽  
Donald M. Roback ◽  
James B. Robertson ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Chao Wang ◽  
Chunfang Liu ◽  
Hongye Wan ◽  
Danhua Wang ◽  
Danni Sun ◽  
...  

Wu-tou decoction (WTD) is a classic traditional Chinese medicine formula and has been used effectively to treat joint diseases clinically. Previous reports indicated that WTD possesses anti-inflammatory activity; however, its actions on pain have not been clarified. Here, we investigated the antinociceptive activity of WTD in CFA-induced mice, and its possible mechanism of the action associated with transient receptor potential (TRP) ion channels was also explored. Our results showed that 1.58, 3.15, and 6.30 g/kg WTD significantly attenuated mechanical, cold, and heat hypersensitivities. Moreover, WTD effectively inhibited spontaneous nociceptive responses to intraplantar injections of capsaicin and cinnamaldehyde, respectively. WTD also effectively suppressed jumping and wet-dog-shake behaviors to intraperitoneal injection of icilin. Additionally, WTD significantly reduced protein expression of TRPV1 and TRPA1 in dorsal root ganglia and skins of injured paw. Collectively, our data demonstrate firstly that WTD exerts antinociceptive activity in inflammatory conditions by attenuating mechanical, cold, and heat hypersensitivities. This antinociceptive effect may result in part from inhibiting the activities of TRPV1, TRPA1, and TRPM8, and the suppression of TRPV1 and TRPA1 protein by WTD was also highly effective. These findings suggest that WTD might be an attractive and suitable therapeutic agent for the management of chronic inflammatory pain.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Darine Fakih ◽  
Adrian Guerrero-Moreno ◽  
Christophe Baudouin ◽  
Annabelle Réaux-Le Goazigo ◽  
Stéphane Mélik Parsadaniantz

Abstract Background Dry eye disease (DED) is a multifactorial disease of the ocular surface accompanied by neurosensory abnormalities. Here, we evaluated the effectiveness of transient receptor potential vanilloid-1 (TRPV1) blockade to alleviate ocular pain, neuroinflammation, and anxiety-like behavior associated with severe DED. Methods Chronic DED was induced by unilateral excision of the Harderian and extraorbital lacrimal glands of adult male mice. Investigations were conducted at 21 days after surgery. The mRNA levels of TRPV1, transient receptor potential ankyrin-1 (TRPA1), and acid-sensing ion channels 1 and 3 (ASIC1 and ASIC3) in the trigeminal ganglion (TG) were evaluated by RNAscope in situ hybridization. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous and stimulated (cold, heat, and acid) corneal nerve responsiveness in ex vivo eye preparations. DED mice received topical instillations of the TRPV1 antagonist (capsazepine) twice a day for 2 weeks from d7 to d21 after surgery. The expression of genes involved in neuropathic and inflammatory pain was evaluated in the TG using a global genomic approach. Chemical and mechanical corneal nociception and spontaneous ocular pain were monitored. Finally, anxiety-like behaviors were assessed by elevated plus maze and black and white box tests. Results First, in situ hybridization showed DED to trigger upregulation of TRPV1, TRPA1, ASIC1, and ASIC3 mRNA in the ophthalmic branch of the TG. DED also induced overexpression of genes involved in neuropathic and inflammatory pain in the TG. Repeated instillations of capsazepine reduced corneal polymodal responsiveness to heat, cold, and acidic stimulation in ex vivo eye preparations. Consistent with these findings, chronic capsazepine instillation inhibited the upregulation of genes involved in neuropathic and inflammatory pain in the TG of DED animals and reduced the sensation of ocular pain, as well as anxiety-like behaviors associated with severe DED. Conclusion These data provide novel insights on the effectiveness of TRPV1 antagonist instillation in alleviating abnormal corneal neurosensory symptoms induced by severe DED, opening an avenue for the repositioning of this molecule as a potential analgesic treatment for patients suffering from chronic DED.


Sign in / Sign up

Export Citation Format

Share Document