634 Ligand-Induced μ Opioid Receptor Internalization in Enteric Neurons Following Chronic Opiate Treatment

2008 ◽  
Vol 134 (4) ◽  
pp. A-90
Author(s):  
Laura Anselmi ◽  
Ingrid Jaramillo ◽  
Catia Sternini
2013 ◽  
Vol 91 (6) ◽  
pp. 854-860 ◽  
Author(s):  
Laura Anselmi ◽  
Ingrid Jaramillo ◽  
Michelle Palacios ◽  
Jennifer Huynh ◽  
Catia Sternini

2019 ◽  
Vol 317 (2) ◽  
pp. G79-G89 ◽  
Author(s):  
Jesse J. DiCello ◽  
Pradeep Rajasekhar ◽  
Emily M. Eriksson ◽  
Ayame Saito ◽  
Arisbel B. Gondin ◽  
...  

Endocytosis is a major mechanism through which cellular signaling by G protein-coupled receptors (GPCRs) is terminated. However, recent studies demonstrate that GPCRs are internalized in an active state and continue to signal from within endosomes, resulting in effects on cellular function that are distinct to those arising at the cell surface. Endocytosis inhibitors are commonly used to define the importance of GPCR internalization for physiological and pathophysiological processes. Here, we provide the first detailed examination of the effects of these inhibitors on neurogenic contractions of gastrointestinal smooth muscle, a key preliminary step to evaluate the importance of GPCR endocytosis for gut function. Inhibitors of clathrin-mediated endocytosis (Pitstop2, PS2) or G protein-coupled receptor kinase-2/3-dependent phosphorylation (Takeda compound 101, Cmpd101), significantly reduced GPCR internalization. However, they also attenuated cholinergic contractions through different mechanisms. PS2 abolished contractile responses by colonic muscle to SNC80 and morphine, which strongly and weakly internalize δ-opioid and μ-opioid receptors, respectively. PS2 did not affect the increased myogenic contractile activity following removal of an inhibitory neural influence (tetrodotoxin) but suppressed electrically evoked neurogenic contractions. Ca2+ signaling by myenteric neurons in response to exogenous ATP was unaffected by PS2, suggesting inhibitory actions on neurotransmitter release rather than neurotransmission. In contrast, Cmpd101 attenuated contractions to the cholinergic agonist carbachol, indicating direct effects on smooth muscle. We conclude that, although PS2 and Cmpd101 are effective blockers of GPCR endocytosis in enteric neurons, these inhibitors are unsuitable for the study of neurally mediated gut function due to their inhibitory effects on neuromuscular transmission and smooth muscle contractility. NEW & NOTEWORTHY Internalization of activated G protein-coupled receptors is a major determinant of the type and duration of subsequent downstream signaling events. Inhibitors of endocytosis effectively block opioid receptor internalization in enteric neurons. The clathrin-dependent endocytosis inhibitor Pitstop2 blocks effects of opioids on neurogenic contractions of the colon in an internalization-independent manner. These inhibitors also significantly impact cholinergic neuromuscular transmission. We conclude that these tools are unsuitable for examination of the contribution of neuronal G protein-coupled receptor endocytosis to gastrointestinal motility.


Neuroscience ◽  
2003 ◽  
Vol 119 (1) ◽  
pp. 33-42 ◽  
Author(s):  
J.G. Minnis ◽  
S. Patierno ◽  
S.E. Kohlmeier ◽  
N.C. Brecha ◽  
M. Tonini ◽  
...  

2020 ◽  
Author(s):  
Thor C. Møller ◽  
Mie F. Pedersen ◽  
Jeffrey R. van Senten ◽  
Sofie D. Seiersen ◽  
Jesper M. Mathiesen ◽  
...  

AbstractMost G protein-coupled receptors (GPCRs) recruit β-arrestins and internalize upon agonist stimulation. For the μ-opioid receptor (μ-OR), this process has been linked to development of opioid tolerance. GPCR kinases (GRKs), particularly GRK2 and GRK3, have been shown to be important for μ-OR recruitment of β-arrestin and internalization. However, the contribution of GRK2 and GRK3 to β-arrestin recruitment and receptor internalization, remain to be determined in their complete absence. Using CRISPR/Cas9-mediated genome editing we established HEK293 cells with knockout of GRK2, GRK3 or both to dissect their individual contributions in β-arrestin2 recruitment and μ-OR internalization upon stimulation with four different agonists. We showed that GRK2/3 removal reduced agonist-induced μ-OR internalization and β-arrestin2 recruitment substantially and we found GRK2 to be more important for these processes than GRK3. Furthermore, we observed a sustained and GRK2/3 independent component of β-arrestin2 recruitment to the plasma membrane upon μ-OR activation. Rescue expression experiments restored GRK2/3 functions. Inhibition of GRK2/3 using the small molecule inhibitor CMPD101 showed a high similarity between the genetic and pharmacological approaches, cross-validating the specificity of both. However, off-target effects were observed at high CMPD101 concentrations. These GRK2/3 KO cell lines should prove useful for a wide range of studies on GPCR function.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Thor C. Møller ◽  
Mie F. Pedersen ◽  
Jeffrey R. van Senten ◽  
Sofie D. Seiersen ◽  
Jesper M. Mathiesen ◽  
...  

Abstract Most G protein-coupled receptors (GPCRs) recruit β-arrestins and internalize upon agonist stimulation. For the μ-opioid receptor (μ-OR), this process has been linked to development of opioid tolerance. GPCR kinases (GRKs), particularly GRK2 and GRK3, have been shown to be important for μ-OR recruitment of β-arrestin and internalization. However, the contribution of GRK2 and GRK3 to β-arrestin recruitment and receptor internalization, remain to be determined in their complete absence. Using CRISPR/Cas9-mediated genome editing we established HEK293 cells with knockout of GRK2, GRK3 or both to dissect their individual contributions in β-arrestin2 recruitment and μ-OR internalization upon stimulation with four different agonists. We showed that GRK2/3 removal reduced agonist-induced μ-OR internalization and β-arrestin2 recruitment substantially and we found GRK2 to be more important for these processes than GRK3. Furthermore, we observed a sustained and GRK2/3 independent component of β-arrestin2 recruitment to the plasma membrane upon μ-OR activation. Rescue expression experiments restored GRK2/3 functions. Inhibition of GRK2/3 using the small molecule inhibitor CMPD101 showed a high similarity between the genetic and pharmacological approaches, cross-validating the specificity of both. However, off-target effects were observed at high CMPD101 concentrations. These GRK2/3 KO cell lines should prove useful for a wide range of studies on GPCR function.


1998 ◽  
Vol 53 (3) ◽  
pp. 377-384 ◽  
Author(s):  
Duane E. Keith ◽  
Benito Anton ◽  
Stephen R. Murray ◽  
Paulette A. Zaki ◽  
Peter C. Chu ◽  
...  

2016 ◽  
Vol 311 (2) ◽  
pp. G252-G266 ◽  
Author(s):  
Joslyn Lay ◽  
Simona E. Carbone ◽  
Jesse J. DiCello ◽  
Nigel W. Bunnett ◽  
Meritxell Canals ◽  
...  

The μ-opioid receptor (MOR) is a major regulator of gastrointestinal motility and secretion and mediates opiate-induced bowel dysfunction. Although MOR is of physiological and therapeutic importance to gut function, the cellular and subcellular distribution and regulation of MOR within the enteric nervous system are largely undefined. Herein, we defined the neurochemical coding of MOR-expressing neurons in the guinea pig gut and examined the effects of opioids on MOR trafficking and regulation. MOR expression was restricted to subsets of enteric neurons. In the stomach MOR was mainly localized to nitrergic neurons (∼88%), with some overlap with neuropeptide Y (NPY) and no expression by cholinergic neurons. These neurons are likely to have inhibitory motor and secretomotor functions. MOR was restricted to noncholinergic secretomotor neurons (VIP-positive) of the ileum and distal colon submucosal plexus. MOR was mainly detected in nitrergic neurons of the colon (nitric oxide synthase positive, 87%), with some overlap with choline acetyltransferase (ChAT). No expression of MOR by intrinsic sensory neurons was detected. [d-Ala2, MePhe4, Gly(ol)5]enkephalin (DAMGO), morphiceptin, and loperamide induced MOR endocytosis in myenteric neurons. After stimulation with DAMGO and morphiceptin, MOR recycled, whereas MOR was retained within endosomes following loperamide treatment. Herkinorin or the δ-opioid receptor agonist [d-Ala2, d-Leu5]enkephalin (DADLE) did not evoke MOR endocytosis. In summary, we have identified the neurochemical coding of MOR-positive enteric neurons and have demonstrated differential trafficking of MOR in these neurons in response to established and putative MOR agonists.


Sign in / Sign up

Export Citation Format

Share Document