Radiation injury induces expression of a novel COX-2 mRNA binding protein, CUGBP2 in intestinal epithelial cells

2001 ◽  
Vol 120 (5) ◽  
pp. A660
Author(s):  
Shrikant Anant ◽  
Courtney Houchen ◽  
Nicholas O. Davidson
2008 ◽  
Vol 294 (4) ◽  
pp. G971-G981 ◽  
Author(s):  
Satish Ramalingam ◽  
Gopalan Natarajan ◽  
Chris Schafer ◽  
Dharmalingam Subramaniam ◽  
Randal May ◽  
...  

CUG triplet repeat-binding protein 2 (CUGBP2) is a RNA-binding protein that regulates mRNA translation and modulates apoptosis. Here, we report the identification of two splice variants (termed variants 2 and 3) in cultured human intestinal epithelial cells and in mouse gastrointestinal tract. The variants are generated from alternative upstream promoters resulting in the inclusion of additional NH2-terminal residues. Although variant 2 is the predominant isoform in normal intestine, its expression is reduced, whereas variant 1 is overexpressed following γ-irradiation. All three variants bind cyclooxygenase-2 (COX-2) mRNA. However, only variant 1 inhibits the translation of the endogenous COX-2 mRNA and a chimeric luciferase mRNA containing the COX-2 3′untranslated region. Furthermore, whereas variant 1 is predominantly nuclear, variants 2 and 3 are predominantly cytoplasmic. These data imply that the additional amino acids affect CUGBP2 function. Previous studies have demonstrated that variant 1 induces intestinal epithelial cells to undergo apoptosis. However, in contrast to variant 1, the two novel variants do not affect proliferation or apoptosis of HCT116 cells. In addition, only variant 1 induced G2/M cell cycle arrest, which was overcome by prostaglandin E2. Moreover, variant 1 increased cellular levels of phosphorylated p53 and Bax and decreased Bcl2. Caspase-3 and -9 were also activated, suggesting the initiation of the intrinsic apoptotic pathway. Furthermore, increased phosphorylation of checkpoint kinase (Chk)1 and Chk2 kinases and increased nuclear localization of Cdc2 and cyclin B1 suggested that cells were in mitotic transition. Taken together, these data demonstrate that cells expressing CUGBP2 variant 1 undergo apoptosis during mitosis, suggesting mitotic catastrophe.


2008 ◽  
Vol 19 (9) ◽  
pp. 3701-3712 ◽  
Author(s):  
Jie Chen ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3′-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.


2016 ◽  
Vol 311 (6) ◽  
pp. C874-C883 ◽  
Author(s):  
Yan Xu ◽  
Jie Chen ◽  
Lan Xiao ◽  
Hee Kyoung Chung ◽  
Yuan Zhang ◽  
...  

The RNA-binding protein HuR is crucial for normal intestinal mucosal regeneration by modulating the stability and translation of target mRNAs, but the exact mechanism underlying HuR trafficking between the cytoplasm and nucleus remains largely unknown. Here we report a novel function of transcription factor JunD in the regulation of HuR subcellular localization through the control of importin-α1 expression in intestinal epithelial cells (IECs). Ectopically expressed JunD specifically inhibited importin-α1 at the transcription level, and this repression is mediated via interaction with CREB-binding site that was located at the proximal region of importin-α1 promoter. Reduction in the levels of importin-α1 by JunD increased cytoplasmic levels of HuR, although it failed to alter whole cell HuR levels. Increased levels of endogenous JunD by depleting cellular polyamines also inhibited importin-α1 expression and increased cytoplasmic HuR levels, whereas JunD silencing rescued importin-α1 expression and enhanced HuR nuclear translocation in polyamine-deficient cells. Moreover, importin-α1 silencing protected IECs against apoptosis, which was prevented by HuR silencing. These results indicate that JunD regulates HuR subcellular distribution by downregulating importin-α1, thus contributing to the maintenance of gut epithelium homeostasis.


2020 ◽  
Vol 295 (25) ◽  
pp. 8602-8612
Author(s):  
Vikash Singh ◽  
Chethana P. Gowda ◽  
Vishal Singh ◽  
Ashwinkumar S. Ganapathy ◽  
Dipti M. Karamchandani ◽  
...  

Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an mRNA-binding protein that has an oncofetal pattern of expression. It is also expressed in intestinal tissue, suggesting that it has a possible role in intestinal homeostasis. To investigate this possibility, here we generated Villin CreERT2:Igf2bp1flox/flox mice, which enabled induction of an IGF2BP1 knockout specifically in intestinal epithelial cells (IECs) of adult mice. Using gut barrier and epithelial permeability assays and several biochemical approaches, we found that IGF2BP1 ablation in the adult intestinal epithelium causes mild active colitis and mild-to-moderate active enteritis. Moreover, the IGF2BP1 deletion aggravated dextran sodium sulfate–induced colitis. We also found that IGF2BP1 removal compromises barrier function of the intestinal epithelium, resulting from altered protein expression at tight junctions. Mechanistically, IGF2BP1 interacted with the mRNA of the tight-junction protein occludin (Ocln), stabilizing Ocln mRNA and inducing expression of occludin in IECs. Furthermore, ectopic occludin expression in IGF2BP1-knockdown cells restored barrier function. We conclude that IGF2BP1-dependent regulation of occludin expression is an important mechanism in intestinal barrier function maintenance and in the prevention of colitis.


2019 ◽  
Vol 316 (3) ◽  
pp. C415-C423 ◽  
Author(s):  
Li-Ping Jiang ◽  
Shelley R. Wang ◽  
Hee Kyoung Chung ◽  
Saharsh Buddula ◽  
Jian-Ying Wang ◽  
...  

Both zipcode binding protein-1 (ZBP1) and phospholipase C-γ1 (PLCγ1) are intimately involved in many aspects of early intestinal mucosal repair after acute injury, but the exact mechanisms that control their cellular abundances remain largely unknown. The present study shows that microRNA-222 (miR-222) interacts with the mRNAs encoding ZBP1 and PLCγ1 and regulates ZBP1 and PLCγ1 expression in intestinal epithelial cells (IECs). The biotinylated miR-222 bound specifically to the ZBP1 and PLCγ1 mRNAs in IECs. Ectopically expressed miR-222 precursor destabilized the ZBP1 and PLCγ1 mRNAs and consequently lowered the levels of cellular ZBP1 and PLCγ1 proteins. Conversely, decreasing the levels of cellular miR-222 by transfection with its antagonism increased the stability of the ZBP1 and PLCγ1 mRNAs and increased the levels of ZBP1 and PLCγ1 proteins. Overexpression of miR-222 also inhibited cell migration over the wounded area, which was partially abolished by overexpressing ZBP1 and PLCγ1. Furthermore, prevention of the increased levels of ZBP1 and PLCγ1 in the miR-222-silenced cells by transfection with specific small interfering RNAs targeting ZBP1 or PLCγ1 mRNA inhibited cell migration after wounding. These findings indicate that induced miR-222 represses expression of ZBP1 and PLCγ1 at the posttranscriptional level, thus inhibiting IEC migration during intestinal epithelial restitution after wounding.


1996 ◽  
Vol 270 (3) ◽  
pp. G393-G400 ◽  
Author(s):  
C. S. Williams ◽  
R. N. DuBois

Prostaglandin endoperoxide synthase-1 [prostaglandin G/H synthase-1 (PGHS-1)] and PGHS-2 are key enzymes in the conversion of arachidonic acid to prostaglandins and other eicosanoids. We refer to these isoforms as cyclooxygenase-1 (COX-1) and COX-2 in this review. This brief review focuses on recent developments in the study of these enzymes. Alterations in the expression levels of COX-2 result in distinct phenotypic changes in intestinal epithelial cells. Overexpression of COX-2 in intestinal epithelial cells results in increased adhesion to extracellular matrix proteins and inhibition of apoptosis. Disruption of the COX-2 gene in mice results in renal dysplasia, cardiac fibrosis, and defects in the ovary. Interestingly, disruption of the COX-1 gene results in distinct phenotypic changes different from those observed for COX-2. COX-1 null mice survive well, have no gastric pathology, and show less indomethacin-induced gastric ulceration than wild-type mice. These two closely related enzymes must have distinct functions in the organisms, since lack of their expression causes distinct phenotypic changes for each respective isoform.


FEBS Letters ◽  
1982 ◽  
Vol 142 (2) ◽  
pp. 247-250 ◽  
Author(s):  
John S. Adams ◽  
Thomas L. Clemens ◽  
Noboru Horiuchi ◽  
Andrea Quaroni ◽  
Michael F. Holick

Sign in / Sign up

Export Citation Format

Share Document