1114 Competitive Binding of Stim1 3′-Untranslated Region to RNA-Binding Protein HuR and MicroRNA-195 Regulates Its Expression and Epithelial Restitution

2012 ◽  
Vol 142 (5) ◽  
pp. S-202
Author(s):  
Ran Zhuang ◽  
Rao N. Jaladanki ◽  
Tongtong Zou ◽  
Lan Liu ◽  
Lan Xiao ◽  
...  
1996 ◽  
Vol 313 (3) ◽  
pp. 1029-1037 ◽  
Author(s):  
Olivier GENESTE ◽  
Françoise RAFFALLI ◽  
Matti A. LANG

Stabilization of mRNA is important in the regulation of CYP2a5 expression but the factors involved in the process are not known [Aida and Negishi (1991) Biochemistry 30, 8041–8045]. In this paper, we describe, for the first time, a protein that binds specifically to the 3′-untranslated region of CYP2a5 mRNA and which is inducible by pyrazole, a compound known to increase the half-life of CYP2a5 mRNA. We also demonstrate that pyrazole treatment causes an elongation of the CYP2a5 mRNA poly(A) tail, and that phenobarbital, which is transcriptional activator of the CYP2a5 gene that does not affect the mRNA half-life, neither induces the RNA-binding protein nor affects the poly(A) tail size. SDS/PAGE of the UV-cross-linked RNA–protein complex demonstrated that the RNA-binding protein has an apparent molecular mass of 44 kDa. The protein-binding site was localized to a 70-nucleotide region between bases 1585 and 1655. Treatment of cytoplasmic extracts with an SH-oxidizing agent, diamide, an SH-blocking agent, N-ethylmaleimide or potato acid phosphatase abolished complex-formation, suggesting that the CYP2a5 mRNA-binding protein is subject to post-translational regulation. Subcellular fractionation showed that the 44 kDa protein is present in polyribosomes and nuclei, and that its apparent induction is much stronger in polyribosomes than in nuclear extracts. We propose that this 44 kDA RNA-binding protein is involved in the stabilization of CYP2a5 mRNA by controlling the length of the poly(A) tail.


2020 ◽  
Vol 319 (1) ◽  
pp. C208-C217
Author(s):  
Yunzhan Zhang ◽  
Jia-Zhong Cai ◽  
Lan Xiao ◽  
Hee K. Chung ◽  
Xiang-Xue Ma ◽  
...  

Homeostasis of the intestinal epithelium is tightly regulated by numerous extracellular and intracellular factors including vitamin D and the vitamin D receptor (VDR). VDR is highly expressed in the intestinal epithelium and is implicated in many aspects of gut mucosal pathophysiology, but the exact mechanism that controls VDR expression remains largely unknown. The RNA-binding protein human antigen R (HuR) regulates the stability and translation of target mRNAs and thus modulates various cellular processes and functions. Here we report a novel role of HuR in the posttranscriptional control of VDR expression in the intestinal epithelium. The levels of VDR in the intestinal mucosa decreased significantly in mice with ablated HuR, compared with control mice. HuR silencing in cultured intestinal epithelial cells (IECs) also reduced VDR levels, whereas HuR overexpression increased VDR abundance; neither intervention changed cellular Vdr mRNA content. Mechanistically, HuR bound to Vdr mRNA via its 3′-untranslated region (UTR) and enhanced VDR translation in IECs. Moreover, VDR silencing not only inhibited IEC migration over the wounded area in control cells but also prevented the increased migration in cells overexpressing HuR, although it did not alter IEC proliferation in vitro and growth of intestinal organoids ex vivo. The human intestinal mucosa from patients with inflammatory bowel diseases exhibited decreased levels of both HuR and VDR. These results indicate that HuR enhances VDR translation by directly interacting with its mRNA via 3′-UTR and that induced VDR by HuR is crucial for rapid intestinal epithelial restitution after wounding.


1996 ◽  
Vol 16 (6) ◽  
pp. 3023-3034 ◽  
Author(s):  
K Lee ◽  
M A Fajardo ◽  
R E Braun

Translation of the mouse protamine 1 (Prm-1) mRNA is repressed for several days during male germ cell differentiation. With the hope of cloning genes that regulate the translational repression of Prm-1, we screened male germ cell cDNA expression libraries with the 3' untranslated region of the Prm-1 RNA. From this screen we obtained two independent clones that encode Prbp, a Prm-1 RNA-binding protein. Prbp contains two copies of a double-stranded-RNA-binding domain. In vitro, the protein binds to a portion of the Prm-1 3' untranslated region previously shown to be sufficient for translational repression in transgenic mice, as well as to poly(I). poly(C). Prbp protein is present in multiple forms in cytoplasmic extracts prepared from wild-type mouse testes and is absent from testes of germ cell-deficient mouse mutants, suggesting that Prbp is restricted to the germ cells of the testis. Immunocytochemical localization confirmed that Prbp is present in the cytoplasmic compartment of late-stage meiotic cells and haploid round spermatids. Recombinant Prbp protein inhibits the translation of multiple mRNAs in a wheat germ lysate, suggesting that Prbp acts to repress translation in round spermatids. While this protein lacks complete specificity for Prm-1-containing RNAs in vitro, the properties of Prbp are consistent with it acting as a general repressor of translation.


2021 ◽  
Author(s):  
Tania Bishola Tshitenge ◽  
Lena Reichert ◽  
Bin Liu ◽  
Christine Clayton

The parasite Trypanosoma brucei grows as bloodstream forms in mammalian hosts, and as procyclic forms in tsetse flies. In trypanosomes, gene expression regulation depends heavily on post-transcriptional mechanisms. Both the RNA-binding protein RBP10 and glycosomal phosphoglycerate kinase PGKC are expressed only in mammalian-infective forms. RBP10 targets procyclic-specific mRNAs for destruction, while PGKC is required for bloodstream-form glycolysis. Developmental regulation of both is essential: expression of either RBP10 or PGKC in procyclic forms inhibits their proliferation. We show that the 3′-untranslated region of the RBP10 mRNA is extraordinarily long - 7.3kb - and were able to identify six different sequences, scattered across the untranslated region, which can independently cause bloodstream-form-specific expression. The 3′-untranslated region of the PGKC mRNA, although much shorter, still contains two different regions, of 125 and 153nt, that independently gave developmental regulation. No short consensus sequences were identified that were enriched either within these regulatory regions, or when compared with other mRNAs with similar regulation, suggesting that more than one regulatory RNA-binding protein is important for repression of mRNAs in procyclic forms. We also identified regions, including an AT repeat, that increased expression in bloodstream forms, or suppressed it in both forms. Trypanosome mRNAs that encode RNA-binding proteins often have extremely extended 3′-untranslated regions. We suggest that one function of this might be to act as a fail-safe mechanism to ensure correct regulation even if mRNA processing or expression of trans regulators is defective.


Sign in / Sign up

Export Citation Format

Share Document