378 miR-222 Regulates E-Cadherin Expression During Lipopolysaccharides Treatment Thus Modulating Intestinal Epithelial Barrier Function

2016 ◽  
Vol 150 (4) ◽  
pp. S85
Author(s):  
Tingxi Yu ◽  
Bei-Lin Gu ◽  
Jun-Kai Yan
2016 ◽  
Vol 36 (9) ◽  
pp. 1332-1341 ◽  
Author(s):  
Tongtong Zou ◽  
Suraj K. Jaladanki ◽  
Lan Liu ◽  
Lan Xiao ◽  
Hee Kyoung Chung ◽  
...  

The disruption of the intestinal epithelial barrier function occurs commonly in various pathologies, but the exact mechanisms responsible are unclear. TheH19long noncoding RNA (lncRNA) regulates the expression of different genes and has been implicated in human genetic disorders and cancer. Here, we report thatH19plays an important role in controlling the intestinal epithelial barrier function by serving as a precursor for microRNA 675 (miR-675).H19overexpression increased the cellular abundance of miR-675, which in turn destabilized and repressed the translation of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the dysfunction of the epithelial barrier. Increasing the level of the RNA-binding protein HuR in cells overexpressingH19prevented the stimulation of miR-675 processing fromH19, promoted ZO-1 and E-cadherin expression, and restored the epithelial barrier function to a nearly normal level. In contrast, the targeted deletion of HuR in intestinal epithelial cells enhanced miR-675 production in the mucosa and delayed the recovery of the gut barrier function after exposure to mesenteric ischemia/reperfusion. These results indicate thatH19interacts with HuR and regulates the intestinal epithelial barrier function via theH19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally.


2015 ◽  
Vol 308 (12) ◽  
pp. G981-G993 ◽  
Author(s):  
Juan Antonio Rodríguez-Feo ◽  
Marta Puerto ◽  
Carolina Fernández-Mena ◽  
Cristina Verdejo ◽  
José Manuel Lara ◽  
...  

Inflammatory bowel disease (IBD) is characterized by an impaired intestinal barrier function. We aimed to investigate the role of reticulon-4B (RTN-4B/NOGO-B), a structural protein of the endoplasmic reticulum, in intestinal barrier function and IBD. We used immunohistochemistry, confocal microscopy, real-time PCR, and Western blotting to study tissue distribution and expression levels of RTN-4B/NOGO-B in control and IBD samples from mouse and humans. We also targeted RTN-4B/NOGO-B using siRNAs in cultured human intestinal epithelial cell (IECs). Epithelial barrier permeability was assessed by transepithelial electrical resistance (TEER) measurement. RTN-4B/NOGO-B is expressed in the intestine mainly by IECs. Confocal microscopy revealed a colocalization of RTN-4B, E-cadherin, and polymerized actin fibers in tissue and cultured IECs. RTN-4B mRNA and protein expression were lower in the colon of IL-10−/− compared with wild-type mice. Colocalization of RTN-4B/E-cadherin/actin was reduced in the colon of IL-10−/− mice. Analysis of endoscopic biopsies from IBD patients showed a significant reduction of RTN-4B/NOGO-B expression in inflamed mucosa compared with control. Treatment of IECs with H2O2 reduced TEER values and triggered phosphorylation of RTN-4B in serine 107 residues as well as downregulation of RTN-4B expression. Acute RTN-4B/NOGO-B knockdown by siRNAs resulted in a decreased TEER values and reduction of E-cadherin and α-catenin expression and in the amount of F-actin-rich filaments in IECs. Epithelial RTN-4B/NOGO-B was downregulated in human and experimental IBD. RTN-4B participates in the intestinal epithelial barrier function, most likely via its involvement in E-cadherin, α-catenin expression, and actin cytoskeleton organization at sites of cell-to-cell contacts.


2010 ◽  
Vol 4 (5) ◽  
pp. 637-651 ◽  
Author(s):  
Susanne A Snoek ◽  
Marleen I Verstege ◽  
Guy E Boeckxstaens ◽  
René M van den Wijngaard ◽  
Wouter J de Jonge

2008 ◽  
Vol 19 (9) ◽  
pp. 3701-3712 ◽  
Author(s):  
Jie Chen ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3′-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.


2013 ◽  
Vol 33 (10) ◽  
pp. 1457-1469 ◽  
Author(s):  
Kirsten E. Pijls ◽  
Daisy M. A. E. Jonkers ◽  
Elhaseen E. Elamin ◽  
Ad A. M. Masclee ◽  
Ger H. Koek

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Alexander Shea Dowdell ◽  
Ian Cartwright ◽  
Rachael Kostelecky ◽  
Tyler Ross ◽  
Nichole Welch ◽  
...  

Epigenomics ◽  
2021 ◽  
Author(s):  
Bing Li ◽  
Yan Li ◽  
Lixiang Li ◽  
Yu Yu ◽  
Xiang Gu ◽  
...  

Aims: Few circRNAs have been thoroughly explored in ulcerative colitis (UC). Materials & methods: Microarrays and qualitative real-time PCR were used to detect and confirm dysregulated circRNAs associated with UC. Functional analysis was performed to explore the roles. Results: A total of 580 circRNAs and 87 miRNAs were simultaneously dysregulated in both inflamed and noninflamed UC colonic mucosa compared with healthy controls. Accordingly, hsa_circ_0001021 was significantly downregulated in patients with UC and was related to Mayo scores. Clinical samples and cell experiments revealed that hsa_circ_0001021 was expressed in epithelial cells and correlated with ZO-1, occludin and CLDN-2. Moreover, hsa_circ_0001021 sponged miR-224-5p to upregulate smad4 and increased ZO-1 and occludin. Conclusion: Hsa_circ_0001021 is related to UC severity and regulates epithelial barrier function via sponging miR-224-5p.


Sign in / Sign up

Export Citation Format

Share Document