Electrical Activity of the Small Intestine

1959 ◽  
Vol 37 (3) ◽  
pp. 268-281 ◽  
Author(s):  
Ε.E. Daniel ◽  
D.R. Carlow ◽  
B.T. Wachter ◽  
W.H. Sutherland ◽  
A. Bogoch ◽  
...  
1995 ◽  
Vol 269 (2) ◽  
pp. R445-R452 ◽  
Author(s):  
V. Martinez ◽  
M. Jimenez ◽  
E. Gonalons ◽  
P. Vergara

Infusion of lipids into the ileum delays gastric emptying and intestinal transit time in some species. The aim of this study was to characterize the actions of intraluminal lipid infusion on gastrointestinal electrical activity in chickens. Animals were prepared for electromyography with chronic electrodes in stomach, duodenum, and small intestine. Two catheters were chronically placed in the esophagus and ileum to infuse equimolar doses of either oleic acid (OA) or triolein (TO). Both OA and TO, esophageally infused, inhibited the frequency of the gastroduodenal cycle and increased the frequency of antiperistaltic spike bursts in the duodenum. Ileal infusion of OA, but not of TO, produced the same effects. Both esophageal and ileal OA infusion increased the duration of the migrating myoelectric complex (MMC) and decreased the speed of propagation of phase III. In conclusion, intraluminal infusion of lipids modulates gastrointestinal motility by decreasing the frequency of the gastric cycle, increasing duodenogastric refluxes, and elongating the MMC. These actions could delay gastric emptying and increase transit time, which suggests the presence of an "ileal brake" mechanism similar to that described in mammals.


1980 ◽  
Vol 60 (2) ◽  
pp. 293-301 ◽  
Author(s):  
L. BUENO ◽  
J. FIORAMONTI ◽  
E. GEUX ◽  
Y. RAISSIGUIER

The electrical activity of the gastrointestinal tract and gallbladder was recorded in four sheep fed a Mg-deficient diet during 10 to 15 days. The mitigating effect of intravenous infusions of MgCl2 was tested at the end of the experimental period in animals presenting hypomagnesemia. Motility of the reticulo-rumen remained unchanged in Mg-deficient sheep except that there was no postprandial increased frequency of contractions. By contrast, the contractions of gallbladder, cecum and proximal colon were reduced in both amplitude and frequency. The amplitude but not the frequency of the antro-duodenal slow-waves was reduced. The amplitude of the regular spiking activity of the small intestine was reduced as well as the number of complexes produced per day. The activity of the spiral colon was correlated to the blood magnesium concentrations but Mg infusion was unable to restore immediately the motor profile of the rest of the gut to its intitial level. This was done within 2–3 days by changes in the diet in three of the four animals. It is concluded that the motility of the whole digestive tract, including the reticulo-rumen, is modified on a Mg-deficient diet and that hypomagnesemia, involved in the atony of the spiral colon, is only one of the factors responsible for the hypomotility.


1975 ◽  
Vol 229 (2) ◽  
pp. 484-488 ◽  
Author(s):  
AK Mukhopadhyay ◽  
LR Johnson ◽  
EM Copeland ◽  
NW Weisbrodt

The effect of intravenously administered secretin (0.5, 2.0, 6.0 U/kg-h) and intraduodenal acidification (13.2 meq/h HCl) on the electrical activity of the small bowel of three conscious dogs with gastric and duodenal cannulas was observed. Electrical activity was recorded in fasted as well as fed conditions through silver wire electrodes implanted along the entire length of the small bowel. Intravenous infusion of secretin in all dosages and in all dogs delayed the onset of the interdigestive myoelectric complex and reduced the total percentage of slow waves with superimposed spike potentials. Intraduodenal acidification also inhibited the interdigestive myoelectric complex, which developed incompletely with fewer action potentials on slow waves. Secretin did not produce any alteration in the fed pattern of activity, slow-wave frequency, or the caudal migration of the interdigestive myoelectric complex. The present study indicates that the nuerohumoral mechanisms responsible for initiation of the interdigestive myoelectric complex may be different from those responsible for its caudal migration.


1962 ◽  
Vol 202 (4) ◽  
pp. 725-730 ◽  
Author(s):  
K. N. Sharma ◽  
E. S. Nasset

Impulses from the peripheral cut end of mesenteric nerves to the intestinal loops of anesthetized cats were recorded oscilloscopically. Dogs with Thiry-Vella loops and with electrodes implanted in mesenteric nerves were used for chronic studies. The loops were perfused with different solutions at constant temperature and pressure. After glucose perfusion of the lumen the increase in frequency of firing was more marked in medium and larger fibers. After perfusion with single amino acids the increase was more conspicuous in smaller fibers. Amigen (amino acid mixture, dextrose, and salts) perfusion resulted in mixed patterns. No appreciable changes were observed with 0.9% NaCl, Tyrode's solution, and 0.025 n NaOH, but a slight increase was obtained with 0.025 n HCl. The possibility of some chemoreceptor mechanism in the small intestine is suggested. Its possible role in ingestion of food is discussed.


1993 ◽  
Vol 265 (4) ◽  
pp. G619-G627
Author(s):  
W. C. De Vos

This study characterizes the migrating spike complex (MSC) in the small intestine of the awake fasting cat and compares the MSC with interdigestive activity in the small intestine of other species. Electrical activity in each of 12 cats with implanted electrodes showed MSCs, bands of spike potentials which attenuated slow-wave frequency and amplitude as the MSCs progressed distally. MSCs occurred at variable frequency with intervals ranging from < 1 min to > 5 h and averaged 51.2 +/- 2.8 (SE) min. MSCs migrated at 1-8 mm/s, accelerating distally; the duration decreased distally such that the length of the bowel in a burst (2-3 cm proximally) was conserved. The MSC was associated with an intense prolonged contraction of duration similar to that of the MSC. Sometimes the MSCs occurred in close association, and when an MSC period was < 5.7 min, the second MSC propagated at a slower rate than the first. Frequently, a brief series of slow wave-associated spikes preceded an MSC. MSCs were not associated with slow waves. The MSC differs in several respects from the migrating myoelectric complex of other laboratory animals and is more appropriately classified in a category that includes giant migrating spikes, prolonged propagated contractions, power contractions, and migrating action potential complexes.


Sign in / Sign up

Export Citation Format

Share Document