Electrophysiologic response of the bovine pancreatic duct epithelium to ethanol exposure in vitro

1998 ◽  
Vol 114 ◽  
pp. A438
Author(s):  
C. Alvarez ◽  
K. Huff ◽  
B.L. Bass
Surgery ◽  
1997 ◽  
Vol 122 (2) ◽  
pp. 476-484 ◽  
Author(s):  
Carlos Alvarez ◽  
Cynthia Nelms ◽  
Victor D'Addio ◽  
Barbara L Bass

2008 ◽  
Vol 295 (1) ◽  
pp. H174-H184 ◽  
Author(s):  
Katherine A. Radek ◽  
Elizabeth J. Kovacs ◽  
Richard L. Gallo ◽  
Luisa A. DiPietro

Physiological angiogenesis is regulated by various factors, including signaling through vascular endothelial growth factor (VEGF) receptors. We previously reported that a single dose of ethanol (1.4 g/kg), yielding a blood alcohol concentration of 100 mg/dl, significantly impairs angiogenesis in murine wounds, despite adequate levels of VEGF, suggesting direct effects of ethanol on endothelial cell signaling (40). To examine the mechanism by which ethanol influences angiogenesis in wounds, we employed two different in vitro angiogenesis assays to determine whether acute ethanol exposure (100 mg/dl) would have long-lasting effects on VEGF-induced capillary network formation. Ethanol exposure resulted in reduced VEGF-induced cord formation on collagen and reduced capillary network structure on Matrigel in vitro. In addition, ethanol exposure decreased expression of endothelial VEGF receptor-2, as well as VEGF receptor-2 phosphorylation in vitro. Inhibition of ethanol metabolism by 4-methylpyrazole partially abrogated the effect of ethanol on endothelial cell cord formation. However, mice treated with t-butanol, an alcohol not metabolized by alcohol dehydrogenase, exhibited no change in wound vascularity. These results suggest that products of ethanol metabolism are important factors in the development of ethanol-induced changes in endothelial cell responsiveness to VEGF. In vivo, ethanol exposure caused both decreased angiogenesis and increased hypoxia in wounds. Moreover, in vitro experiments demonstrated a direct effect of ethanol on the response to hypoxia in endothelial cells, as ethanol diminished nuclear hypoxia-inducible factor-1α protein levels. Together, the data establish that acute ethanol exposure significantly impairs angiogenesis and suggest that this effect is mediated by changes in endothelial cell responsiveness to both VEGF and hypoxia.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Alexander GJ Skorput ◽  
Stephanie M Lee ◽  
Pamela WL Yeh ◽  
Hermes H Yeh

Prenatal exposure to ethanol induces aberrant tangential migration of corticopetal GABAergic interneurons, and long-term alterations in the form and function of the prefrontal cortex. We have hypothesized that interneuronopathy contributes significantly to the pathoetiology of fetal alcohol spectrum disorders (FASD). Activity-dependent tangential migration of GABAergic cortical neurons is driven by depolarizing responses to ambient GABA present in the cortical enclave. We found that ethanol exposure potentiates the depolarizing action of GABA in GABAergic cortical interneurons of the embryonic mouse brain. Pharmacological antagonism of the cotransporter NKCC1 mitigated ethanol-induced potentiation of GABA depolarization and prevented aberrant patterns of tangential migration induced by ethanol in vitro. In a model of FASD, maternal bumetanide treatment prevented interneuronopathy in the prefrontal cortex of ethanol exposed offspring, including deficits in behavioral flexibility. These findings position interneuronopathy as a mechanism of FASD symptomatology, and posit NKCC1 as a pharmacological target for the management of FASD.


1997 ◽  
Vol 273 (1) ◽  
pp. G204-G216 ◽  
Author(s):  
L. al-Nakkash ◽  
C. U. Cotton

Secretion of salt and water by the epithelial cells that line pancreatic ducts depends on activation of apical membrane Cl- conductance. In the present study, we characterized two types of Cl- conductances present in the apical cell membrane of bovine pancreatic duct epithelial cells. Primary cultures of bovine main pancreatic duct epithelium and an immortalized cell line (BPD1) derived from primary cultures were used. Elevation of intracellular adenosine 3',5'-cyclic monophosphate (cAMP) or Ca2+ in intact monolayers of duct epithelium induced sustained anion secretion. Agonist-induced changes in plasma membrane Cl- permeability were accessed by 36 Cl- efflux, whole cell current recording, and measurements of transepithelial Cl- current across permeabilized epithelial monolayers. Elevation of intracellular cAMP elicited a sustained increase in Cl- permeability, whereas elevation of intracellular Ca2+ induced only a transient increase in Cl- permeability. Ca(2+)- but not cAMP-induced increases in Cl- permeability were abolished by preincubation of cells with the Ca2+ buffer 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl) ester (BAPTA-AM). N-phenylanthranilic acid (DPC; 1 mM) and glibenclamide (100 microM), but not 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 500 microM), inhibited the cAMP-induced increase in Cl- permeability. In contrast, DPC and DIDS, but not glibenclamide, inhibited the Ca(2+)-induced increase in Cl- permeability. We conclude from these experiments that bovine pancreatic duct epithelial cells express at least two types of Cl- channels, cAMP and Ca2+ activated, in the apical cell membrane. Because the Ca(2+)-activated increase in Cl- permeability is transient, the extent to which this pathway contributes to sustained anion secretion by the ductal epithelium remains to be determined.


1991 ◽  
Vol 261 (1) ◽  
pp. G92-G103
Author(s):  
M. J. Rutten ◽  
C. D. Moore

The effects of low doses of luminal ethanol on the amiloride-sensitive apical membrane potential of Necturus antral mucosa were studied using conventional microelectrode techniques. Luminal ethanol (0.250-4.0% vol/vol) caused a dose-dependent hyperpolarization of the apical membrane potential (Vmc), an increase in transepithelial resistance (Rt) and resistance ratio (Ra/Rb), and a decrease in transepithelial potential (Vms). Luminal amiloride (100 microM) to 4% ethanol-treated antra did not cause any additional hyperpolarization of Vmc. Compared with luminal 2% ethanol-Ringer, an equivalent osmotic mannitol solution depolarized Vmc and basolateral potential (Vcs), decreased Rt and Ra/Rb, and increased Vms. A single dose of 0.50% ethanol attenuated the effects of a second 2% ethanol exposure on Vmc. No change in periodic acid-Schiff (PAS)-positive mucous granule content could be found between control and 2% ethanol-treated antra. The Ca2+ ionophores A23187 or ionomycin (0.25-5.0 microM) dose dependently hyperpolarized the Vmc and Vcs, increased Rt and Ra/Rb, and decreased Vms. Luminal Ca(2+)-free Ringer had no effect on luminal 2.00% ethanol-induced changes in membrane potentials or resistances. Pretreatment with BAPTA blocked by approximately 70 and 55% the Vmc hyperpolarization of 2 and 4% ethanol, respectively. Pretreatment with ruthenium red (10-50 microM) also dose dependently reduced the 2% ethanol-induced changes in Vmc. The data indicate that 1) low doses of luminal ethanol and Ca2+ ionophores have similar effects on Necturus gastric antral membrane potentials and resistances, 2) ethanol-induced hyperpolarizations of the Vmc are partially mediated through an alteration in intracellular Ca2+, and 3) low doses of luminal ethanol do not cause the release of antral epithelial mucous granules at the time when significant changes are occurring in the Vmc.


Sign in / Sign up

Export Citation Format

Share Document