Cis-and trans-isomers of [Rh(en)2X2]+ where X = Cl and Br. Possible use of 13C NMR spectroscopy in their identification

1975 ◽  
Vol 14 ◽  
pp. L37-L38 ◽  
Author(s):  
C. Burgess ◽  
F.R. Hartley
Molbank ◽  
10.3390/m1140 ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. M1140
Author(s):  
Jack Bennett ◽  
Paul Murphy

(2S,3R,6R)-2-[(R)-1-Hydroxyallyl]-4,4-dimethoxy-6-methyltetrahydro-2H-pyran-3-ol was isolated in 18% after treating the glucose derived (5R,6S,7R)-5,6,7-tris[(triethylsilyl)oxy]nona-1,8-dien-4-one with (1S)-(+)-10-camphorsulfonic acid (CSA). The one-pot formation of the title compound involved triethylsilyl (TES) removal, alkene isomerization, intramolecular conjugate addition and ketal formation. The compound was characterized by 1H and 13C NMR spectroscopy, ESI mass spectrometry and IR spectroscopy. NMR spectroscopy was used to establish the product structure, including the conformation of its tetrahydropyran ring.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4539
Author(s):  
Nguyen Minh Thuy ◽  
Vo Minh ◽  
Tran Ben ◽  
My Tuyen Thi Nguyen ◽  
Ho Ha ◽  
...  

Butterfly pea flower have great sensory attraction, but they have not yet been used widely in Vietnam. Extracts of butterfly pea flowers can be used conveniently as a natural blue colorant for food products. In this study, the identification of anthocyanin compounds in butterfly pea flowers was performed by UPLC coupled with a UV and Mass spectrometer instrument. Positive and negative ion electrospray MS/MS chromatograms and spectra of the anthocyanin compounds were determined. By analyzing the chromatograms and spectra for each ion, five anthocyanins were identified in the butterfly pea flower extract; these were delphinidin-3-(6”‐p-coumaroyl)-rutinoside, cyanidin 3-(6”-p-coumaroyl)-rutinoside, delphinidin-3-(p-coumaroyl) glucose in both cis- and trans- isomers, cyanidin-3-(p-coumaroyl-glucoside) and delphinidin-3-pyranoside. Additionally, based on their intensity, it was determined that cyanidin-3-(p-coumaroyl-glucoside) was the most abundant anthocyanin, followed by cyanidin 3-(6”-p-coumaroyl)-rutinoside, delphinidin-3-(p-coumaroyl-glucoside), delphinidin-3-(6”-p-coumaroyl)-rutinoside and delphinidin-3-pyranoside. In this study, cyanidin derivatives were discovered in butterfly pea flower extract, where these compounds had not been detected in previous studies.


Sign in / Sign up

Export Citation Format

Share Document