Plane strain elastic–plastic bending of a strain-hardening curved beam

2001 ◽  
Vol 43 (1) ◽  
pp. 39-56 ◽  
Author(s):  
Parviz Dadras
2010 ◽  
Vol 77 (6) ◽  
Author(s):  
Sergei Alexandrov ◽  
Yeong-Maw Hwang

Finite deformation elastic-plastic analysis of plane-strain pure bending of a strain hardening sheet is presented. The general closed-form solution is proposed for an arbitrary isotropic hardening law assuming that the material is incompressible. Explicit relations are given for most popular conventional laws. The stage of unloading is included in the analysis to investigate the distribution of residual stresses and springback. The paper emphasizes the method of solution and the general qualitative features of elastic-plastic solutions rather than the study of the bending process for a specific material. In particular, it is shown that rigid-plastic solutions can be used to predict the bending moment at sufficiently large strains.


1981 ◽  
Vol 103 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Akram Zahoor ◽  
Paul C. Paris

An analysis for crack instability in an elastic-plastic strain hardening material is presented which utilizes the J-integral and the tearing modulus parameter, T. A center-cracked panel of finite dimensions with Ramberg-Osgood material representation is analyzed for plane stress as well as plane strain. The analysis is applicable in the entire range of elastic-plastic loading from linear elastic to full yield. Crack instability is strongly influenced by the elastic compliance of the system, the conditions of plane stress or plane strain, and the hardening characteristics of the material. Numerical results indicate that if crack stability is ensured in a plane strain situation, then under the same circumstances a geometrically identical but plane stress panel will be stable.


1968 ◽  
Vol 3 (4) ◽  
pp. 304-312 ◽  
Author(s):  
M Radomski ◽  
D J White

Theoretical derivations are presented for the relations between maximum deflection and the corresponding maximum strain for some simple beams subject to elastic-plastic bending. Both elastic-perfectly plastic and arbitrary stress-strain relations are considered. Where possible, explicit analytical solutions are given, but where this is not possible numerical solutions are obtained by means of computer programmes. The calculations show that in elastic-perfectly plastic material short plastic zones may develop and cause large strains in the beam even though the deflection corresponding to first yield is not greatly exceeded. On the other hand, strain hardening elongates the plastic zones, so producing a more favourable strain distribution along the length of the beam than would exist without it. The more pronounced the strain-hardening characteristic, i.e. the greater the rate of increase of stress with strain, the less concentrated will be the strains. The mode of loading is important in that the higher the rate of change of bending moment, in the region of ihe maximum bending moment, the more concentrated will be the local strains.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 145
Author(s):  
Sergei Alexandrov ◽  
Elena Lyamina ◽  
Yeong-Maw Hwang

The present paper concerns the general solution for finite plane strain pure bending of incompressible, orthotropic sheets. In contrast to available solutions, the new solution is valid for inhomogeneous distributions of plastic properties. The solution is semi-analytic. A numerical treatment is only necessary for solving transcendent equations and evaluating ordinary integrals. The solution’s starting point is a transformation between Eulerian and Lagrangian coordinates that is valid for a wide class of constitutive equations. The symmetric distribution relative to the center line of the sheet is separately treated where it is advantageous. It is shown that this type of symmetry simplifies the solution. Hill’s quadratic yield criterion is adopted. Both elastic/plastic and rigid/plastic solutions are derived. Elastic unloading is also considered, and it is shown that reverse plastic yielding occurs at a relatively large inside radius. An illustrative example uses real experimental data. The distribution of plastic properties is symmetric in this example. It is shown that the difference between the elastic/plastic and rigid/plastic solutions is negligible, except at the very beginning of the process. However, the rigid/plastic solution is much simpler and, therefore, can be recommended for practical use at large strains, including calculating the residual stresses.


Sign in / Sign up

Export Citation Format

Share Document