Approximate analytical solutions for the flow of a third-grade fluid in a pipe

2002 ◽  
Vol 37 (2) ◽  
pp. 187-195 ◽  
Author(s):  
M. Yürüsoy ◽  
M. Pakdemirli
2010 ◽  
Vol 65 (12) ◽  
pp. 1071-1076 ◽  
Author(s):  
Rahmat Ellahi ◽  
Tasawar Hayat ◽  
Fazal Mahmood Mahomed

The present note investigates the influence of slip on the generalized Couette flows of a third-grade fluid. Two flow problems are considered. The resulting equations and the boundary conditions are nonlinear. Analytical solutions of the governing nonlinear problems are found in closed form.


2016 ◽  
Vol 71 (7) ◽  
pp. 595-606
Author(s):  
Volkan Yıldız ◽  
Mehmet Pakdemirli ◽  
Yiğit Aksoy

AbstractSteady-state parallel plate flow of a third-grade fluid and a Newtonian fluid with temperature-dependent viscosity is considered. Approximate analytical solutions are constructed using the newly developed perturbation-iteration algorithms. Two different perturbation-iteration algorithms are used. The velocity and temperature profiles obtained by the iteration algorithms are contrasted with the numerical solutions as well as with the regular perturbation solutions. It is found that the perturbation-iteration solutions converge better to the numerical solutions than the regular perturbation solutions, in particular when the validity criteria of the regular perturbation solution are not satisfied. The new analytical approach produces promising results in solving complex fluid problems.


Author(s):  
M Yürüsoy ◽  
M Pakdemirli ◽  
B S Yilbaş

The flow of non-Newtonian fluid in between two parallel plates at different temperatures is considered. A third-grade fluid with temperature-dependent viscosity is considered in the analysis and the Reynolds model used to account for it. Approximate analytical solutions for the velocity and temperature profiles are found using perturbation techniques. It is found that the influence of the non-Newtonian parameter and viscosity index is more pronounced in the region of the plate surfaces where the rate of fluid strain and temperature gradients are high.


Sign in / Sign up

Export Citation Format

Share Document