Characterisation and developmental expression of a chitinase gene in Heterodera glycines

2002 ◽  
Vol 32 (10) ◽  
pp. 1293-1300 ◽  
Author(s):  
Bingli Gao ◽  
R Allen ◽  
Tom Maier ◽  
Jeff P McDermott ◽  
Eric L Davis ◽  
...  
1999 ◽  
Vol 12 (8) ◽  
pp. 663-669 ◽  
Author(s):  
Jan M. de Boer ◽  
Yitang Yan ◽  
Xiaohong Wang ◽  
Geert Smant ◽  
Richard S. Hussey ◽  
...  

Two β-1,4-endoglucanases (EGases), Hg-eng-1 and Hg-eng-2, were recently cloned from the soybean cyst nematode, Heterodera glycines, and their expression was shown in the subventral esophageal glands of hatched second-stage juveniles (J2). We examined the expression of these EGases in the subventral glands of all post-embryonic life stages of H. glycines by in situ hybridization and immunolocalization. The first detectable accumulation of EGase mRNAs occurred in the subventral glands of unhatched J2. EGase transcripts remained detectable in J2 after hatching and during subsequent root invasion. However, in late parasitic J2 and third-stage juveniles (J3), the percentage of individuals that showed EGase transcripts decreased. In female fourth-stage juveniles and adult females, EGase transcripts were no longer detected in the subventral glands. EGase hybridization signal reappeared in unhatched males coiled within the J3 cuticle, and transcripts were also present in the subventral glands of migratory adult males. Immunofluorescence labeling showed that EGase translation products are most abundantly present in the subventral glands of preparasitic J2, migratory parasitic J2, and adult males. The presence of EGases predominantly in the migratory stages suggests that the enzymes are used by the nematodes to soften the walls of root cells during penetration and intracellular migration.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 406
Author(s):  
Xun Zhang ◽  
Yue Wang ◽  
Sufang Zhang ◽  
Xiangbo Kong ◽  
Fu Liu ◽  
...  

Chitinases, which are crucial enzymes required for chitin degradation and reconstruction, are often selectively considered to be effective molecular targets for pest control due to their critical roles in insect development. Although the Hyphantria cunea chitinase gene has been reported previously, its sequence characteristics, gene function, and feasibility as a potential target for pest management were absent. In the present study, we characterized the H. cunea chitinase gene and designated it HcCht5. Phylogenic and domain structure analysis suggested that HcCht5 contained the typical chitinase features and was clustered into chitinase group I. Tissue-specific and developmental expression pattern analysis with Real-Time Quantitative PCR (RT-qPCR) showed that HcCht5 was mainly expressed in the integument tissues and that the transcript levels peaked during molting. RNA interference (RNAi)-mediated silencing of HcCht5 caused 33.3% (2 ug) and 66.7% (4 ug) mortality rates after double-stranded RNA (dsRNA) injection. Importantly, the interference efficiency of HcCht5 depended on the injection time of double-stranded RNA (dsRNA), as the pre-molting treatment achieved molt arrest more effectively. In addition, transcriptome sequencing (RNA-seq) analysis of RNAi samples demonstrated silencing of the down-regulated HcCht5 genes related to chitin metabolism and molting hormone signaling, as well as genes related to detoxification metabolism. Our results indicate the essential role of HcCht5 in H. cunea development and detail the involvement of its gene function in the larval molting process.


Plant Science ◽  
1994 ◽  
Vol 98 (2) ◽  
pp. 163-173 ◽  
Author(s):  
Marcia Margis-Pinheiro ◽  
Jocelyne Marivet ◽  
Gérard Burkard

Sign in / Sign up

Export Citation Format

Share Document