gland cell
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 23)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Vol 9 (1) ◽  
pp. 38
Author(s):  
Matthew Jorgensen ◽  
Pujhitha Ramesh ◽  
Miriam Toro ◽  
Emily Evans ◽  
Nicholas Moskwa ◽  
...  

Understanding the different regulatory functions of epithelial and mesenchymal cell types in salivary gland development and cellular organization is essential for proper organoid formation and salivary gland tissue regeneration. Here, we demonstrate a biocompatible platform using pre-formed alginate hydrogel microtubes to facilitate direct epithelial–mesenchymal cell interaction for 3D salivary gland cell organization, which allows for monitoring cellular organization while providing a protective barrier from cell-cluster loss during medium changes. Using mouse salivary gland ductal epithelial SIMS cells as the epithelial model cell type and NIH 3T3 fibroblasts or primary E16 salivary mesenchyme cells as the stromal model cell types, self-organization from epithelial–mesenchymal interaction was examined. We observed that epithelial and mesenchymal cells undergo aggregation on day 1, cavitation by day 4, and generation of an EpCAM-expressing epithelial cell layer as early as day 7 of the co-culture in hydrogel microtubes, demonstrating the utility of hydrogel microtubes to facilitate heterotypic cell–cell interactions to form cavitated organoids. Thus, pre-formed alginate microtubes are a promising co-culture method for further understanding epithelial and mesenchymal interaction during tissue morphogenesis and for future practical applications in regenerative medicine.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3594
Author(s):  
Petr Slama ◽  
Terezie Zavadilova ◽  
Ales Pavlik ◽  
Pavel Horky ◽  
Sylvie Skalickova ◽  
...  

In this study, we focused analyzing γδ T cells during bovine mammary gland inflammation induced by Streptococcus uberis. A mammary gland cell suspension was obtained using lavage 24, 48, 72, and 168 h after intramammary-induced infection. The proportion of lymphocytes increased during the entire week in which inflammation was present. The γδ T cells were also elevated during inflammation, reaching their peak at 72 h following induced inflammation. The percentage of apoptotic lymphocytes continually increased, with the highest proportion occurring 168 h after S. uberis infection. The results show that γδ T cells may be involved in the resolution of inflammation in bovine mammary glands, with the apoptosis of those cells potentially playing an important role.


2021 ◽  
Author(s):  
Shuaifei Ji ◽  
Yan Li ◽  
Laixian Zhou ◽  
Jiangbing Xiang ◽  
Huating Chen ◽  
...  

Abstract Background: Large skin defect caused severe disruption to the overall skin structure and irreversible damage of sweat gland (SG), resulting in destroy of physiological function of the skin. Reprogramming fibroblasts into sweat gland lineages may provide a promising strategy to obtain the desirable cell types for functional repair and regeneration of damaged skin. Methods: A direct reprogramming strategy of single factor ectodermal dysplasia antigen (EDA) in combination with small molecule cocktails promoting cell-fate conversion to regenerate SG cells from human dermal fibroblasts (HDFs) was developed. Quantitative PCR (qPCR), flow cytometry, calcium activity analysis, immunocytochemical analyses and starch-iodine sweat tests were used to characterize the phenotype, gene expression and function features of the induced sweat gland cells (iSGCs). Results: EDA overexpression drove HDFs toward SG lineages, and HDFs transfected with EDA acquired sweat gland cell phenotype in sweat gland conditional medium (SGM). Small-molecule cocktails favoring SG lineages greatly accelerated the SG fate program in SGM-treated HDF-EDA cells and further induced the regeneration of iSGCs. The HDFs-derived iSGCs exhibited similar phenotypical and functional features of native sweat gland cells. Eventually, in vivo transplantation experiment confirmed that iSGCs had the ability to regenerate SG structurally and functionally.Conclusion: We developed a SG reprogramming strategy to generate functional iSGCs from HDFs by using single factor EDA in combination with small molecules. The generation of iSGCs has important implications for in situ skin regeneration with restoration of sweat glands in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lygia Sega Nogueira ◽  
Carolina P. Vasconcelos ◽  
Jessica Rodrigues Plaça ◽  
Geovanni Pereira Mitre ◽  
Leonardo Oliveira Bittencourt ◽  
...  

In Brazilian northern Amazon, communities are potentially exposed and vulnerable to methylmercury (MeHg) toxicity through the vast ingestion of fish. In vivo and in vitro studies demonstrated that the salivary glands as a susceptible organ to this potent environmental pollutant, reporting alterations on physiological, biochemical, and proteomic parameters. However, the alterations caused by MeHg on the gene expression of the exposed human salivary gland cells are still unknown. Therefore, the goal was to perform the transcriptome profile of the human salivary gland cell line after exposure to MeHg, using the microarray technique and posterior bioinformatics analysis. The cell exposure was performed using 2.5 µM MeHg. A previously published study demonstrated that this concentration belongs to a range of concentrations that caused biochemical and metabolic alterations in this linage. As a result, the MeHg exposure did not cause lethality in the human salivary gland cells line but was able to alter the expression of 155 genes. Downregulated genes (15) are entirety relating to the cell metabolism impairment, and according to KEGG analysis, they belong to the glycosphingolipid (GSL) biosynthesis pathway. On the other hand, most of the 140 upregulated genes were related to cell-cycle progression, DNA repair, and replication pathway, or cellular defenses through the GSH basal metabolism. These genomic changes revealed the effort to the cell to maintain physiological and genomic stability to avoid cell death, being in accordance with the nonlethality in the toxicity test. Last, the results support in-depth studies on nonlethal MeHg concentrations for biomarkers identification that interpret transcriptomics data in toxicological tests serving as an early alert of physiological changes in vitro biological models.


2021 ◽  
pp. 7-11
Author(s):  
V. R. Chavan

Lead is one of the elements that can be described as purely toxic. Lead displaces biologically important metals interfering with a variety of body's chemical reactions. A variety of environmental contaminants including heavy metals interfere the endocrine axis of fish. Lead is reported with endocrine disruptive potential. Lead affects the hypothalamus pituitary gonadal axis at multiple sites. In the present work an effort is made to explore qualitative changes in the pituitary gland cell types of Cirrhinus mrigala after an acute and chronic exposure to lead. The study revealed the toxic effects of lead on endocrine functions of a teleost which further affects the fecundity of fish. The present study provides a manifold confirmation on the endocrine disrupting effects of lead in fish


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Irene Lichtscheidl ◽  
Sue Lancelle ◽  
Marieluise Weidinger ◽  
Wolfram Adlassnig ◽  
Marianne Koller-Peroutka ◽  
...  

AbstractGlands of Drosera absorb and transport nutrients from captured prey, but the mechanism and dynamics remain unclear. In this study, we offered animal proteins in the form of fluorescent albumin (FITC-BSA) and observed the reactions of the glands by live cell imaging and fluorescence microscopy. The ultrastructure of these highly dynamic processes was also assessed in high-pressure frozen and freeze substituted (HPF-FS) cells. HPF-FS yielded excellent preservation of the cytoplasm of all cell types, although the cytosol looked different in gland cells as compared to endodermoid and stalk cells. Especially prominent were the ER and its contacts with the plasma membrane, plasmodesmata, and other organelles as well as continuities between organelles. Also distinct were actin microfilaments in association with ER and organelles. Application of FITC-BSA to glands caused the formation of fluorescent endosomes that pinched off the plasma membrane. Endosomes fused to larger aggregates, and accumulated in the bulk cytoplasm around the nucleus. They did not fuse with the cell sap vacuole but remained for at least three days; in addition, fluorescent vesicles also proceeded through endodermoid and transfer cells to the epidermal and parenchymal cells of the tentacle stalk.


Author(s):  
Tom Maier ◽  
Rick E. Masonbrink ◽  
Paramasivan Vijayapalani ◽  
Michael Gardner ◽  
Amanda D. Howland ◽  
...  

The soybean cyst nematode, Heterodera glycines, is the most economically devastating pathogen of soybean in the United States and threatens to become even more damaging through the selection of virulent nematode populations in the field that can overcome natural resistance mechanisms in soybean cultivars. This pathogen, therefore, demands intense transcriptomic/genomic research inquiries into the biology of its parasitic mechanisms. H. glycines delivers effector proteins that are produced in specialized gland cells into the soybean root to enable infection. The study of effector proteins, thus, is particularly promising when exploring novel management options against this pathogen. Here we announce the availability of a gland cell-specific RNA-seq resource. These data represent an expression snapshot of gland cell activity during early soybean infection of a virulent and an avirulent H. glycines population, which provides a unique and highly valuable resource for scientists examining effector biology and nematode virulence.


2020 ◽  
Author(s):  
Anke Witt ◽  
Peter Mirtschink ◽  
Alessandra Palladini ◽  
Ivona Mateska ◽  
Heba Abdelmegeed ◽  
...  

AbstractObjectiveAdrenocortical hormone levels increase in obesity, potentially contributing to development of obesity-associated pathologies. Here we explored whether lipidomic remodeling of the adrenal gland could mediate altered adrenocortical steroidogenesis during obesity.MethodsLipidomic analysis was performed in adrenal glands using shotgun mass spectrometry (MS), and steroid profiling of sera by liquid chromatography tandem mass spectrometry (LC-MS/MS) from lean and obese mice. Gene expression analysis was performed in adrenal glands and adrenocortical cell populations. The role of Fatty Acid Desaturase 2 (FADS2) and arachidonic acid on steroid hormone production was studied in primary adrenal gland cell cultures.ResultsAdrenal glands of obese mice displayed a distinct lipidomic profile, encompassing longer and more unsaturated storage lipids and phospholipids compared to adrenal glands of lean mice. Arachidonoyl acyl chains were abundant in the adrenal gland phospholipidome and increased upon obesity. This was accompanied by increased Fads2 expression, the rate-limiting enzyme of arachidonic acid synthesis, and enhanced plasma adrenocortical hormone levels. Inhibition of FADS2 in primary adrenal gland cell cultures abolished steroidogenesis, which was restored by arachidonic acid supplementation.ConclusionsOur data suggest that the FADS2 – arachidonic acid axis regulates adrenocortical hormone synthesis, while alterations in the content of arachidonoyl chains in the adrenal gland phopsholipidome could account for disturbed adrenocortical hormone production.HighlightsThe adrenal gland lipidome is remodeled in obesity.Arachidonoyl groups are abundant in the adrenal gland phospholipidome and increase in obesity.FADS2 is highly expressed in the adrenal gland and its expression is further increased in obesity.FADS2 inhibition blunts adrenocortical steroidogenesis in primary adrenal gland cell cultures, while arachidonic acid supplementation restores it.


Sign in / Sign up

Export Citation Format

Share Document