phospholipases a
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 14)

H-INDEX

28
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260496
Author(s):  
Siravit Sitprija ◽  
Lawan Chanhome ◽  
Onrapak Reamtong ◽  
Tipparat Thiangtrongjit ◽  
Taksa Vasaruchapong ◽  
...  

The venomic profile of Asian mountain pit viper Ovophis monticola is clarified in the present study. Using mass spectrometry-based proteomics, 247 different proteins were identified in crude venom of O. monticola found in Thailand. The most abundant proteins were snake venom metalloproteases (SVMP) (36.8%), snake venom serine proteases (SVSP) (31.1%), and phospholipases A2 (PLA2) (12.1%). Less abundant proteins included L-amino acid oxidase (LAAO) (5.7%), venom nerve growth factor (3.6%), nucleic acid degrading enzymes (3.2%), C-type lectins (CTL) (1.6%), cysteine-rich secretory proteins (CRISP) (1.2%) and disintegrin (1.2%). The immunoreactivity of this viper’s venom to a monovalent antivenom against green pit viper Trimeresurus albolabris, or to a polyvalent antivenom against hemotoxic venom was investigated by indirect ELISA and two-dimensional (2D) immunoblotting. Polyvalent antivenom showed substantially greater reactivity levels than monovalent antivenom. A titer for the monovalent antivenom was over 1:1.28x107 dilution while that of polyvalent antivenom was 1:5.12x107. Of a total of 89 spots comprising 173 proteins, 40 spots of predominantly SVMP, SVSP and PLA2 were specific antigens for antivenoms. The 49 unrecognized spots containing 72 proteins were characterized as non-reactive proteins, and included certain types of CTLs and CRISPs. These neglected venom constituents could limit the effectiveness of antivenom-based therapy currently available for victims of pit viper envenomation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nhi Thuc Vuong ◽  
Timothy N. W. Jackson ◽  
Christine E. Wright

Human envenoming by Australian brown snakes (Pseudonaja spp.) may result in potentially life-threatening hypotension and subsequent cardiovascular collapse. There have been relatively few studies of the cardiovascular and sympathetic effects of Pseudonaja spp. venoms. In this study, we have examined the effects of venom from five brown snake species—P. affinis, aspidorhyncha, inframacula, nuchalis, and textilis—on cardiac inotropic and chronotropic responses, vascular tone, and sympathetic nerve-induced vascular contractions in rat isolated tissues. The role of phospholipases A2 (PLA2s) in venom-induced effects was assessed with the sPLA2 inhibitor varespladib. In rat isolated left and right atria, there were no physiologically relevant effects of Pseudonaja venoms (0.1–30 µg/ml) on left atrial force of contraction (inotropy) or right atrial rate (chronotropy). In contrast, in isolated small mesenteric arteries precontracted with a thromboxane mimetic, each of the five brown snake venoms (at 30 µg/ml) caused marked vasorelaxation (−60 to –90% of contractile tone). Pretreatment with varespladib (1 µM) significantly inhibited the vasorelaxation caused by P. aspidorhyncha, P. nuchalis, and P. textilis venoms. Electrically induced sympathetic nerve-mediated contractions of mesenteric arteries were significantly attenuated by only P. textilis, and P. affinis venoms (30 µg/ml) and these sympatholytic effects were inhibited by varespladib (1 µM). Based on their inhibition with the sPLA2 inhibitor varespladib, we conclude that PLA2 toxins in P. aspidorhyncha, P. nuchalis, and P. textilis venoms are involved in brown snake venom-induced vasorelaxation and the sympatholytic effects of P. affinis, and P. textilis venoms. Our study supports the promising potential role of varespladib as an initial (pre-referral) and/or adjunct (in combination with antivenom) therapeutic agent for brown snake envenoming.


2021 ◽  
Vol 12 ◽  
Author(s):  
Michael S. Kuefner

The phospholipases A2 (PLA2) superfamily encompasses enzymes commonly found in mammalian tissues and snake venom. Many of these enzymes have unique tissue distribution, function, and substrate specificity suggesting distinct biological roles. In the past, much of the research on secretory PLA2s has analyzed their roles in inflammation, anti-bacterial actions, and atherosclerosis. In recent studies utilizing a variety of mouse models, pancreatic islets, and clinical trials, a role for many of these enzymes in the control of metabolism and insulin action has been revealed. In this review, this research, and the unique contributions of the PLA2 enzymes in insulin resistance and metabolism.


Author(s):  
N. M. Litvinko

The activity of porcine pancreatic phospholipase A2 and the same of cobra venom toward phosphatidylcholine having different supramolecular organization and interfacial charge (micelles with sodium deoxycholate and liposomes) under UV irradiation (180–400 nm) was studied. It was shown that the UV-irradiated lipid phase is characterized by an increased index of phosphatidylcholine oxidation and the absence of a peak with a maximum of 235.5 nm, related to the presence of unsaturated bonds in the UV spectrum of docosahexaenoic acid, but retained in the presence of the antioxidant trolox. The activation of both phospholipases A2 after UV irradiation of the substrate was established, regardless of its supramolecular organization, the charge of the interfacial surface, and the substrate specificity of the enzymes. Using dynamic light scattering, 0.3 % of larger particles were found among the irradiated micelles of phosphatidylcholine. The results obtained indicate that areas of accumulation of hydroperoxidized lipids can be formed in the irradiated model membrane, which serve as a site of intensified attack for phospholipases.


2021 ◽  
Vol 35 ◽  
pp. 205873842199095
Author(s):  
Ewa Pniewska-Dawidczyk ◽  
Izabela Kupryś-Lipińska ◽  
Gabriela Turek ◽  
Dorota Kacprzak ◽  
Joanna Wieczfinska ◽  
...  

Chronic inflammation in asthmatics is initiated/exacerbated by many environmental factors, such as bacterial lipopolysaccharide and allergens. Phospholipase A2 and histone acetyltransferase/deacetylases are enzymes involved in inflammatory process, particularly in lipid inflammatory mediators production and control of transcription of many inflammatory genes, respectively. The aim of the study was to identify differences in the inflammatory process in patients with severe and non-severe asthma, taking as a criterion expression of two groups of enzymes: phospholipases A2 and histone acetyltransferases/deacetylases. Thirty-two patients with severe, non-severe atopic to house dust mite asthmatics and 14 healthy volunteers were recruited. Peripheral blood mononuclear cells were stimulated with Dermatophagoides pteronyssinus allergen (nDer p1) and bacterial lipopolysaccharide (LPS). The expression of phospholipases A2 and histone acetyltransferases and deacetylases were assessed using TaqMan Low Density Array Cards. The protein expression was analyzed with immunoblot. Increased expression of phospholipase A2 Group IVC ( PLA2G4C) and cytosolic phospholipase A2 gamma (cPLA2γ) protein was observed in peripheral blood mononuclear cells (PBMC) from severe asthmatics in response to LPS and nDer p1, compared to non-severe asthmatics. nDer p1-stimulated PBMC from severe asthmatics exhibit induced expression of HDAC1 and similar trend was observed in protein concentration. Decreased expression of EP300 occurred in PBMC of severe asthmatics. PBMC from non-severe asthmatics showed decreased expression of HDAC2 and PLA2G15 after LPS treatment. In conclusion, in response to LPS and dust mite allergen, PBMC from severe and non-severe asthmatics modulate expression of selected phospholipase A2, histone acetyltransferases and deacetylases, while increased expression of cPLA2γ characterizes PBMC response from severe asthmatics.


2020 ◽  
Author(s):  
Mitchel Otieno Okumu ◽  
James Mucunu Mbaria ◽  
Joseph Kangangi Gikunju ◽  
Paul Gichohi Mbuthia ◽  
Vincent Odongo Madadi ◽  
...  

Abstract Objective: Naja ashei is a snake of medical importance in Kenya, Ethiopia, Somalia, Uganda, and Tanzania. Little is known about the enzymatic (snake venom phospholipases A2; svPLA2’s) and toxic (lethal) activities of Naja ashei venom and crucially, the safety and capacity of available antivenom to neutralize these effects. This study aimed to determine the enzymatic and toxic activities of Naja ashei venom and the capacity of Indian and Mexican manufactured antivenoms to neutralize these effects. The protein content of the venom and the test antivenoms were also evaluated. A 12-point log concentration-response curve (0.5-22.5 µg/mL) was generated on an agarose-egg yolk model to predict the svPLA2 activity of the venom. The toxicity profile of the venom and antivenoms was evaluated in the brine shrimp lethality assay. Lowry’s method was used for protein estimation. Results: Low and intermediate concentrations of the venom exhibited similar svPLA2 activities. The same was true for concentrations >15µg/mL. Intermediate and high doses of the venom exhibited similar mortalities in brine shrimp and test antivenoms were generally non-toxic but poorly neutralized svPLA2 activity. Mexican manufactured antivenom had lower protein content but neutralized venom-induced brine shrimp lethality much more effectively than Indian manufactured antivenom.


RSC Advances ◽  
2020 ◽  
Vol 10 (64) ◽  
pp. 38727-38735
Author(s):  
Shaohua Liang ◽  
Shukun Wang ◽  
Yannan Meng ◽  
Cong Sun

The addition methods of PLA1 and PLA2 had a vital influence on the preparation of GPC, and the method of PLA2 → A1 was the most effective.


Sign in / Sign up

Export Citation Format

Share Document