Reply to Comment by J. Liang and H. Ding on “Solutions for transversely isotopic piezoelectric infinite body, semi-finite body and bimaterial infinite body subjected to uniform ring bonding and charge”. Int. J. Solids Structures Vol. 36, No. 17, pp 2613–2631 (1999), by Ding Haojiang, Chi Yuwei and Guo Fenglin

2000 ◽  
Vol 37 (31) ◽  
pp. 4313 ◽  
Author(s):  
Haojiang Ding
Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6484
Author(s):  
Giampaolo D’Alessandro ◽  
Filippo de Monte

Boundary conditions of high kinds (fourth and sixth kind) as defined by Carslaw and Jaeger are used in this work to model the thermal behavior of perfect conductors when involved in multi-layer transient heat conduction problems. In detail, two- and three-layer configurations are analyzed. In the former, a thin layer modeled as a lumped body is subject to a surface heat flux on the front side while it is in perfect (fourth kind) or in imperfect (sixth kind) thermal contact with a semi-infinite or finite body on the back side. When dealing with a semi-infinite body in imperfect contact, the temperature solution is derived by means of the Laplace transform method. Green’s function approach is also used but for solving the companion case of a finite body in perfect contact with the thin film. In the latter, a thin layer with internal heat generation is located between two semi-infinite or finite bodies in perfect/imperfect contact. For the sake of thermal symmetry, such a three-layer structure reduces to a two-layer configuration. Results are given in both tabular and graphical forms and show the effect of heat capacity and thermal resistance on the temperature distribution of conductive layers.


2007 ◽  
Vol 345-346 ◽  
pp. 881-884
Author(s):  
Sang Yun Park ◽  
Jai Hak Park

The finite element alternating method (FEAM) was extended to obtain fracture mechanics parameters and elasto-plastic stress fields for 3-D inner cracks. For solving a problem of a 3-D finite body with cracks, the FEAM alternates independently the finite element method (FEM) solution for the uncracked body and the solution for the crack in an infinite body. As the required solution for a crack in an infinite body, the symmetric Galerkin boundary element method formulated by Li and Mear was used. For elasto-plastic numerical analysis, the initial stress method proposed by Zienkiewicz and co-workers and the iteration procedure proposed by Nikishkov and Atluri were used after modification. The extended FEAM was examined through comparing with the results of commercial FEM program for several example 3-D crack problems.


1996 ◽  
Vol 79 (1) ◽  
pp. R17-R21 ◽  
Author(s):  
V. M. Mirsalimov ◽  
E. A. Allahyarov
Keyword(s):  

1996 ◽  
Vol 118 (3) ◽  
pp. 527-531 ◽  
Author(s):  
L. Rapoport

Seizure phenomena in pin-on-disk tests have been studied for “soft” and “hard” steel specimens. Differences in competing and dominant wear mechanisms under steady state friction have been preserved for “soft” and “hard” specimens in the region of transition to seizure or galling. Severe wear was observed for “soft” specimens under all loads tested, while adhesion and splitting off of wear particle conglomerates (microseizure) were identified for “hard” specimens. The contact temperature, calculated in accordance with the temperature model of plastically deformed contact spots (Kuhlmann-Wilsdorf), has appeared to be low for “soft” specimens and not sufficient for adhesion interaction. The effect of oxide films on the friction of “hard” specimens has been estimated in accordance with the temperature model for a coated semi-infinite body (Tian and Kennedy). The insulated oxide films on the surface of “hard” specimens create the “skin effect” and lead, therefore, to raising the temperature up to the temperature of adhesion interaction. Temperature instability of hard surfaces has been demonstrated to result from the “skin effect” and from a disturbance in equilibrium of formation and failure of oxide films. It has been shown that for “soft” specimens the prime cause of transition to seizure was the mechanical interlocking between the wear particles and the soft disk surface combined with mechanical instability, while for “hard” specimens the cause was temperature instability. A more realistic temperature model of the contact has been considered, which takes into account some competing wear mechanisms (oxidational wear, ploughing, delamination) and the effect of wear particles.


Sign in / Sign up

Export Citation Format

Share Document