scholarly journals NO REGULATES PDGF-A AND MCP-1 EXPRESSION INDUCED BY TEMPORAL GRADIENTS IN SHEAR STRESS IN CULTURED HUMAN ENDOTHELIAL CELLS

1997 ◽  
Vol 75 ◽  
pp. 10
Author(s):  
J. Frangos ◽  
X.P. Bao
2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
D R Bibli ◽  
D R Hu ◽  
D R Looso ◽  
D R Weigert ◽  
D R Wittig ◽  
...  

Abstract Background In vascular endothelial cells, cysteine metabolism by the cystathionine-γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the “S-sulfhydrome” i.e. the spectrum of proteins targeted by H2Sn in human endothelial cells. Methods LC-MS/MS was used to identify S-sulfhydrated cysteines in endothelial cell proteins and β3 integrin intra-protein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements and flow-induced vasodilatation in endothelial cell-specific CSE knock out mice and a small collective of patients with endothelial dysfunction. Results Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low), (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression, and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell “S-sulfhydrome” consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on β3 integrin in detail we found that S-sulfhydration affected intra-protein disulfide bond formation and was required for the maintenance of an extended-open conformation of the β leg. β3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between β3 integrin and Gα13, resulting in the constitutive activation of RhoA and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation and a failure to detect β3 integrin S-sulfhydration, all of which were rescued following the administration of an H2S supplement. Conclusions Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Deutsche Forschungsgemeinschaft


2004 ◽  
Vol 164 (6) ◽  
pp. 811-817 ◽  
Author(s):  
Carlo Iomini ◽  
Karla Tejada ◽  
Wenjun Mo ◽  
Heikki Vaananen ◽  
Gianni Piperno

We identified primary cilia and centrosomes in cultured human umbilical vein endothelial cells (HUVEC) by antibodies to acetyl-α-tubulin and capillary morphogenesis gene-1 product (CMG-1), a human homologue of the intraflagellar transport (IFT) protein IFT-71 in Chlamydomonas. CMG-1 was present in particles along primary cilia of HUVEC at interphase and around the oldest basal body/centriole at interphase and mitosis. To study the response of primary cilia and centrosomes to mechanical stimuli, we exposed cultured HUVEC to laminar shear stress (LSS). Under LSS, all primary cilia disassembled, and centrosomes were deprived of CMG-1. We conclude that the exposure to LSS ends the IFT in cultured endothelial cells.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Armond L. Franklin-Murray ◽  
Sharmila Mallya ◽  
Allen Jankeel ◽  
Suhas Sureshchandra ◽  
Ilhem Messaoudi ◽  
...  

ABSTRACT Toxoplasma gondii can infect and replicate in vascular endothelial cells prior to entering host tissues. However, little is known about the molecular interactions at the parasite-endothelial cell interface. We demonstrate that T. gondii infection of primary human umbilical vein endothelial cells (HUVEC) altered cell morphology and dysregulated barrier function, increasing permeability to low-molecular-weight polymers. T. gondii disrupted vascular endothelial cadherin (VE-cadherin) and β-catenin localization to the cell periphery and reduced VE-cadherin protein expression. Notably, T. gondii infection led to reorganization of the host cytoskeleton by reducing filamentous actin (F-actin) stress fiber abundance under static and microfluidic shear stress conditions and by reducing planar cell polarity. RNA sequencing (RNA-Seq) comparing genome-wide transcriptional profiles of infected to uninfected endothelial cells revealed changes in gene expression associated with cell-cell adhesion, extracellular matrix reorganization, and cytokine-mediated signaling. In particular, genes downstream of Hippo signaling and the biomechanical sensor and transcriptional coactivator Yes-associated protein (YAP) were downregulated in infected endothelial cells. Interestingly, T. gondii infection activated Hippo signaling by increasing phosphorylation of LATS1, leading to cytoplasmic retention of YAP, and reducing YAP target gene expression. These findings suggest that T. gondii infection triggers Hippo signaling and YAP nuclear export, leading to an altered transcriptional profile of infected endothelial cells. IMPORTANCE Toxoplasma gondii is a foodborne parasite that infects virtually all warm-blooded animals and can cause severe disease in individuals with compromised or weakened immune systems. During dissemination in its infected hosts, T. gondii breaches endothelial barriers to enter tissues and establish the chronic infections underlying the most severe manifestations of toxoplasmosis. The research presented here examines how T. gondii infection of primary human endothelial cells induces changes in cell morphology, barrier function, gene expression, and mechanotransduction signaling under static conditions and under the physiological conditions of shear stress found in the bloodstream. Understanding the molecular interactions occurring at the interface between endothelial cells and T. gondii may provide insights into processes linked to parasite dissemination and pathogenesis.


2006 ◽  
Vol 38 (Supplement) ◽  
pp. S4
Author(s):  
Joon Y. Park ◽  
Iain K. Farrance ◽  
Hanjoong Jo ◽  
Steven R. Brant ◽  
Stephen M. Roth ◽  
...  

2006 ◽  
Vol 70 (3) ◽  
pp. 578-588 ◽  
Author(s):  
S MATTIUSSI ◽  
K MATSUMOTO ◽  
B ILLI ◽  
F MARTELLI ◽  
M CAPOGROSSI ◽  
...  

2000 ◽  
Vol 525 (3) ◽  
pp. 761-770 ◽  
Author(s):  
Henning Morawietz ◽  
Roland Talanow ◽  
Marten Szibor ◽  
Uwe Rueckschloss ◽  
Andreas Schubert ◽  
...  

1998 ◽  
Vol 76 ◽  
pp. 145
Author(s):  
Atsushi Miyamoto ◽  
Satoshi Nishikawa ◽  
Hiroyuki Yamamoto ◽  
Ryuichi Kudo ◽  
Hideyo Ohshika

Sign in / Sign up

Export Citation Format

Share Document