scholarly journals Inhibitory effect of Ca2+-binding protein regucalcin on Ca2+-ATPase activity in rat brain microsomes

1997 ◽  
Vol 73 ◽  
pp. 68
Author(s):  
Yasuko Hanahisa ◽  
Masayoshi Yamaguchi
1982 ◽  
Vol 14 (5) ◽  
pp. 347-350 ◽  
Author(s):  
Yasuko Shibata ◽  
Hidemaro Ohzeki ◽  
Masanori Sato ◽  
Yasuhiko Suzuki ◽  
Hisashi Takiguchi

Alcohol ◽  
1989 ◽  
Vol 6 (6) ◽  
pp. 431-436 ◽  
Author(s):  
Tina Machu ◽  
John J. Woodward ◽  
Steven W. Leslie

1969 ◽  
Vol 47 (5) ◽  
pp. 501-506 ◽  
Author(s):  
E. G. McGeer ◽  
D. A. V. Peters

Over 700 compounds were screened at 10−4 M concentration as inhibitors of the conversion of L-tryptophan-14C to serotonin-14C in crude rat brain homogenates. Most of the compounds had little or no inhibitory effect. Those with strong inhibitory properties were tested as inhibitors of 5-hydroxytryptophan decarboxylase and, if active on the decarboxylase, were assayed as tryptophan hydroxylase inhibitors. Except for a few oxidizing and complexing agents and for some substituted p-phenylenediamines, the compounds found to inhibit tryptophan hydroxylase by >50% belonged to the three types of inhibitors already known, i.e. catechols, phenylalanine and ring-substituted phenylalanines, and 6-substituted tryptophans. The numerous data in this screen make possible some comments as to the structural requirements for activity within each class. A comparison of the results on tryptophan hydroxylase with data on tyrosine hydroxylase inhibition in similar homogenates makes it clear that two separate, if somewhat similar, enzymes are involved.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rong Liu ◽  
Neil Billington ◽  
Yi Yang ◽  
Charles Bond ◽  
Amy Hong ◽  
...  

AbstractMyosin-7a, despite being monomeric in isolation, plays roles in organizing actin-based cell protrusions such as filopodia, microvilli and stereocilia, as well as transporting cargoes within them. Here, we identify a binding protein for Drosophila myosin-7a termed M7BP, and describe how M7BP assembles myosin-7a into a motile complex that enables cargo translocation and actin cytoskeletal remodeling. M7BP binds to the autoinhibitory tail of myosin-7a, extending the molecule and activating its ATPase activity. Single-molecule reconstitution show that M7BP enables robust motility by complexing with myosin-7a as 2:2 translocation dimers in an actin-regulated manner. Meanwhile, M7BP tethers actin, enhancing complex’s processivity and driving actin-filament alignment during processive runs. Finally, we show that myosin-7a-M7BP complex assembles actin bundles and filopodia-like protrusions while migrating along them in living cells. Together, these findings provide insights into the mechanisms by which myosin-7a functions in actin protrusions.


1985 ◽  
Vol 85 (1) ◽  
pp. 123-136 ◽  
Author(s):  
J H Kaplan ◽  
L J Kenney

Phosphorylation of red cell membranes at ambient temperatures with micromolar [32P]ATP in the presence of Na ions produced phosphoenzyme that was dephosphorylated rapidly upon the addition of ADP or K ions. However, as first observed by Blostein (1968, J. Biol. Chem., 243:1957), the phosphoenzyme formed at 0 degrees C under otherwise identical conditions was insensitive to the addition of K ions but was dephosphorylated rapidly by ADP. This suggested that the conformational transition from ADP-sensitive, K-insensitive Na pump phosphoenzyme (E1 approximately P) to K-sensitive, ADP-insensitive phosphoenzyme (E2P) is blocked at 0 degrees C. Since the ATP:ADP exchange reaction is a partial reaction of the overall enzyme cycle dependent upon the steady state level of E1 approximately P that is regulated by [Na], we examined the effects of temperature on the curve relating [Na] to ouabain-sensitive ATP:ADP exchange. The characteristic triphasic curve seen at higher temperatures when [Na] was between 0.5 and 100 mM was not obtained at 0 degrees C. Simple saturation was observed instead with a K0.5 for Na of approximately 1 mM. The effect of increasing temperature on the ATP:ADP exchange at fixed (150 mM) Na was compared with the effect of increasing temperature on (Na + K)-ATPase activity of the same membrane preparation. It was observed that (a) at 0 degrees C, there was significant ouabain-sensitive ATP:ADP exchange activity, (b) at 0 degrees C, ouabain-sensitive (Na + K)-ATPase activity was virtually absent, and (c) in the temperature range 5-37 degrees C, there was an approximately 300-fold increase in (Na + K)-ATPase activity with only a 9-fold increase in the ATP:ADP exchange. These observations are in keeping with the suggestion that the E1 approximately P----E2P transition of the Na pump in human red cell membranes is blocked at 0 degrees C. Previous work has shown that the inhibitory effect of Na ions and the low-affinity stimulation by Na of the rate of ATP:ADP exchange occur at the extracellular surface of the Na pump. The absence of both of these effects at 0 degrees C, where E1 approximately P is maximal, supports the idea that external Na acts through sites on the E2P form of the phosphoenzyme.


Sign in / Sign up

Export Citation Format

Share Document