scholarly journals Functional organization of respiratory neurons in the central respiratory mechanisms in brain stem and drug action thereon.

1985 ◽  
Vol 39 ◽  
pp. 59
Author(s):  
Takehiko Hukuhara
1978 ◽  
Vol 28 ◽  
pp. 41
Author(s):  
Takehiko Hukuhara ◽  
Shigeru Kageyama ◽  
Yuriko Kiguchi ◽  
Kazutoshi Goto ◽  
Yoshinobu Nishikawa ◽  
...  

1991 ◽  
Vol 70 (3) ◽  
pp. 1265-1270 ◽  
Author(s):  
D. Zhou ◽  
M. J. Wasicko ◽  
J. M. Hu ◽  
W. M. St John

Our purpose was to compare further eupneic ventilatory activity with that of gasping. Decerebrate, paralyzed, and ventilated cats were used; the vagi were sectioned within the thorax caudal to the laryngeal branches. Activities of the phrenic nerve and medullary respiratory neurons were recorded. Antidromic invasion was used to define bulbospinal, laryngeal, or not antidromically activated units. The ventilatory pattern was reversibly altered to gasping by exposure to 1% carbon monoxide in air. In eupnea, activities of inspiratory neurons commenced at various times during inspiration, and for most the discharge frequency gradually increased. In gasping, the peak discharge frequency of inspiratory neurons was unaltered. However, all commenced activities at the start of the phrenic burst and reached peak discharge almost immediately. The discharge frequencies of all groups of expiratory neurons fell in gasping, with many neurons ceasing activity entirely. These data are consistent with the hypothesis that brain stem mechanisms controlling eupnea and gasping differ fundamentally.


1994 ◽  
Vol 64 ◽  
pp. 205
Author(s):  
Yoko Tsukamoto ◽  
Fusao Kato ◽  
Kazuo Takano ◽  
Naofumi Kimura ◽  
Takehiko Hukuhara

1975 ◽  
Vol 38 (5) ◽  
pp. 1162-1171 ◽  
Author(s):  
D. W. Richter ◽  
F. Heyde ◽  
M. Gabriel

Respiratory neurons were recorded intracellularly within the lateral region of the lower brain stem of vagotomized and artificially ventilated cats. Bulbospinal, vagal, and antidromically nonresponsive types of neurons were distinguished by means of vagal and intraspinal stimulation. Almost all types of neurons discharged a burst of action potentials during one of the two phases of the central respiratory cycle, as indicated by phrenic nerve activity. The discharge pattern of the different types of neurons were described. The origin of the spntaneous changes of the membrane potential was investigated by measurements of the reversal potentials and membrane conductance changes. The results reveal that both inspiratory and expiratory types of neurons receive an excitatory input during their discharge period, and a reciprocal inhibitory input during their silent period. In addition, one type of neuron was described which receives inhibitory inputs during both inspiration and expiration. Recurrent inhibition, as indicated by hyperpolarizing postsynaptic potentials and membrane conductance changes following the antidromic action potential seems to exist only within the network of the vagal neurons. Suggestions are made about the functional organization of the neuronal network of the medullary respiratory system and the mechanism generating its rhythmic activity.


2008 ◽  
Vol 104 (5) ◽  
pp. 1513-1521 ◽  
Author(s):  
Paul A. Gray

Breathing is a genetically determined behavior generated by neurons in the brain stem. Transcription factors, in part, determine the basic developmental identity of neurons, but the relationships between these genes and the neural populations generating and modulating respiration are unclear. The diversity of brain stem populations has been proposed to result from a combinatorial code of transcription factor expression corresponding to the anterior-posterior (A-P) and dorsal-ventral (D-V) location of a neuron's birth. I provide a schematic of transcription factor coding identifying at least 15 genetically distinct D-V subdivisions of brain stem neurons that, combined with A-P patterning, may provide a genetic organization of the brain stem in general, with the eventual goal of describing respiratory populations in particular. Using a combination of fate mapping in transgenic mouse lines and immunohistochemistry, we confirm the parabrachial nuclei are derived from a subset of Atoh1 expression progenitor neurons. I hypothesize the Kölliker-Fuse nucleus can be uniquely defined in the neonate mouse by the coexpression of the transcription factor FoxP2 in Atoh1-derived neurons of rhombomere 1.


1990 ◽  
Vol 64 (3) ◽  
pp. 767-781 ◽  
Author(s):  
T. Drew ◽  
S. Rossignol

1. The present article described the various patterns of movement evoked in the limbs and neck by microstimulation (33-ms trains, 330 Hz, 0.2-ms pulses at less than or equal to 35 microA) of the medullary reticular formation (MRF) of seven chronically implanted, unanesthetized, intact cats. Altogether 878 loci were stimulated in 83 penetrations. However, as stimulation in the more lateral regions of the MRF was less effective, the results are based on stimulation in 592 loci made in 56 penetrations at distances of between 0.5 and 2.5 mm lateral to the midline. 2. Of these 592 loci, movement of one or more parts of the body was evoked from a total of 539 (91%) sites. Most of these movements were compound in nature, involving movement of one or more limbs as well as the head. Discrete movements were observed only with respect to the head; limb movements were always accompanied by head movement. In addition, hindlimb movements were always accompanied by forelimb movements, although the inverse was generally not true. 3. The most common effects of the stimulation were as follows: a turning of the head to the ipsilateral side (79% of stimulated sites); flexion of the ipsilateral elbow (41%); and extension of the contralateral elbow (45%). Effects in the hindlimbs were more variable and less frequent, with the majority of the effective loci causing flexion of the ipsilateral knee (9%) together with extension of the contralateral knee (8%). In total, including both flexion and extension, 18% of the stimulated sites caused movement of the ipsilateral hindlimb and 11% of the contralateral hindlimb. 4. Although movements of the head were obtained from the whole extent of the brain stem, movements of the forelimbs showed a dorsoventral organization with flexion of the ipsilateral elbow being evoked from the more dorsal regions of the brain stem, whereas contralateral elbow extension was evoked more frequently from the ventral regions. There was a large area of overlap from which movements of both limbs could be obtained simultaneously. Movements of the hindlimbs were more frequently evoked from central and ventral areas of the brain stem and from the most rostral aspect of the explored region. 5. In examining the combinations of movements evoked by the MRF stimulation, it was found that the most commonly evoked pattern was movement of the head to the stimulated side together with flexion of the ipsilateral forelimb and extension of the contralateral forelimb (26.5% of sites).(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document