Macrophage specific overexpression of the human macrophage scavenger receptor in transgenic mice, using a 180-kb yeast artificial chromosome, leads to enhanced foam cell formation of isolated peritoneal macrophages

1999 ◽  
Vol 147 (2) ◽  
pp. 339-347 ◽  
Author(s):  
Menno P.J de Winther ◽  
Ko Willems van Dijk ◽  
Bart J.M van Vlijmen ◽  
Marion J.J Gijbels ◽  
Joris J Heus ◽  
...  
2010 ◽  
Vol 36 (02) ◽  
pp. 157-162 ◽  
Author(s):  
Peter Seizer ◽  
Susanne Schiemann ◽  
Tobias Merz ◽  
Karin Daub ◽  
Boris Bigalke ◽  
...  

2021 ◽  
Vol 41 (3) ◽  
pp. 1076-1091
Author(s):  
Imam Manggalya Adhikara ◽  
Keiko Yagi ◽  
Dyah Samti Mayasari ◽  
Yoko Suzuki ◽  
Koji Ikeda ◽  
...  

Objective: Chondroitin sulfate proteoglycans are the primary constituents of the macrophage glycosaminoglycan and extracellular microenvironment. To examine their potential role in atherogenesis, we investigated the biological importance of one of the chondroitin sulfate glycosaminoglycan biosynthesis gene, ChGn-2 (chondroitin sulfate N -acetylgalactosaminyltransferase-2), in macrophage foam cell formation. Approach and Results: ChGn-2-deficient mice showed decreased and shortened glycosaminoglycans. ChGn-2 −/− /LDLr −/− (low-density lipoprotein receptor) mice generated less atherosclerotic plaque after being fed with Western diet despite exhibiting a metabolic phenotype similar to that of the ChGn-2 +/+ /LDLr −/− littermates. We demonstrated that in macrophages, ChGn-2 expression was upregulated in the presence of oxLDL (oxidized LDL), and glycosaminoglycan was substantially increased. Foam cell formation was significantly altered by ChGn-2 in both mouse peritoneal macrophages and the RAW264.7 macrophage cell line. Mechanistically, ChGn-2 enhanced oxLDL binding on the cell surface, and as a consequence, CD36—an important macrophage membrane scavenger receptor—was differentially regulated. Conclusions: ChGn-2 alteration on macrophages conceivably influences LDL accumulation and subsequently accelerates plaque formation. These results collectively suggest that ChGn-2 is a novel therapeutic target amenable to clinical translation in the future. Graphic Abstract: A graphic abstract is available for this article.


2021 ◽  
pp. 174181
Author(s):  
Jianzhen Lei ◽  
Jingheng Ye ◽  
Rong She ◽  
Ruyi Zhang ◽  
Yanan Wang ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Michishige Terasaki ◽  
Munenori Hiromura ◽  
Yusaku Mori ◽  
Kyoko Kohashi ◽  
Hideki Kushima ◽  
...  

Dipeptidyl peptidase-4 inhibitors (DPP-4is), in addition to their antihyperglycemic roles, have antiatherosclerotic effects. We reported that sodium-glucose cotransporter 2 inhibitors (SGLT2is) suppress atherosclerosis in a glucose-dependent manner in diabetic mice. Here, we investigated the effects of combination therapy with SGLT2i and DPP-4i on atherosclerosis in diabetic mice. SGLT2i (ipragliflozin, 1.0 mg/kg/day) and DPP-4i (alogliptin, 8.0 mg/kg/day), either alone or in combination, were administered to db/db mice or streptozotocin-induced diabetic apolipoprotein E-null (Apoe−/−) mice. Ipragliflozin and alogliptin monotherapies improved glucose intolerance; however, combination therapy did not show further improvement. The foam cell formation of peritoneal macrophages was suppressed by both the ipragliflozin and alogliptin monotherapies and was further enhanced by combination therapy. Although foam cell formation was closely associated with HbA1c levels in all groups, DPP-4i alone or the combination group showed further suppression of foam cell formation compared with the control or SGLT2i group at corresponding HbA1c levels. Both ipragliflozin and alogliptin monotherapies decreased scavenger receptors and increased cholesterol efflux regulatory genes in peritoneal macrophages, and combination therapy showed additive changes. In diabetic Apoe−/− mice, combination therapy showed the greatest suppression of plaque volume in the aortic root. In conclusion, combination therapy with SGLT2i and DPP4i synergistically suppresses macrophage foam cell formation and atherosclerosis in diabetic mice.


Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 1009-1018 ◽  
Author(s):  
Amélie Rodrigue-Way ◽  
Annie Demers ◽  
Huy Ong ◽  
André Tremblay

Whereas the uptake of oxidized lipoproteins by scavenger receptor CD36 in macrophages has been associated with foam cell formation and atherogenesis, little is known about the role of CD36 in regulating lipid metabolism in adipocytes. Here we report that treatment of 3T3-L1 adipocytes with hexarelin, a GH-releasing peptide that interacts with CD36, resulted in a depletion of intracellular lipid content with no significant change in CD36 expression. Microarray analysis revealed an increased pattern in several genes involved in fatty acid mobilization toward the mitochondrial oxidative phosphorylation process in response to hexarelin. Interestingly, many of these up-regulated genes are known targets of peroxisomal proliferator-activated receptor (PPAR)-γ, such as FATP, CPT-1, and F1-ATPase, suggesting that adipocyte response to hexarelin may involve PPARγ activation. Expression studies also indicate an increase in thermogenic markers PPARγ coactivator 1α and uncoupling protein-1, which are normally expressed in brown adipocytes. Electron microscopy of hexarelin-treated 3T3-L1 adipocytes showed an intense and highly organized cristae formation that spans the entire width of mitochondria, compared with untreated cells, and cytochrome c oxidase activity was enhanced by hexarelin, two features characteristic of highly oxidative tissues. A similar mitochondrial phenotype was detected in epididymal white fat of mice treated with hexarelin, along with an increased expression of thermogenic markers that was lost in treated CD36-null mice, suggesting that the ability of hexarelin to promote a brown fat-like phenotype also occurs in vivo and is dependent on CD36. These results provide a potential role for CD36 to impact the overall metabolic activity of fat usage and mitochondrial biogenesis in adipocytes.


Sign in / Sign up

Export Citation Format

Share Document