scholarly journals Characterization of alkaline phosphatases from human first trimester placentas.

1979 ◽  
Vol 254 (3) ◽  
pp. 935-938 ◽  
Author(s):  
T. Sakiyama ◽  
J.C. Robinson ◽  
J.Y. Chou
1970 ◽  
Vol 47 (3) ◽  
pp. 637-645 ◽  
Author(s):  
Sosamma J. Berger ◽  
Bertram Sacktor

A technique for the isolation of intact brush borders from rabbit renal cortex was evaluated. The procedure was monitored by phase and electron microscopy and marker enzymes, i.e. ATP:NMN adenylyl transferase, nuclear; cytochrome oxidase, mitochondrial; ß-glucuronidase, lysosomal; and glucose-6-Pase, microsomal; and indicated an essentially pure preparation of brush borders. The disaccharidase, trehalase, previously reported in renal tubules, was localized uniquely in brush borders. Maltase was also found; the specific activities of the two enzymes in the brush borders were increased 10- to 20-fold. Other disaccharidases, such as sucrase, isomaltase, lactase, and cellobiase, were absent. It is suggested that trehalase and maltase are appropriate candidates for marker enzymes of the renal brush border. Isolated brush borders possessed a ouabain-sensitive (Na+ + K+) ATPase, an oligomycin-insensitive Mg++ ATPase, and a Ca++-activated ATPase. Alkaline phosphatases, dephosphorylating ß-glycero-P, and trehalose-6-P were also present. The specific activities of these enzymes were increased three-to-five fold in the brush-border preparations; however, activities were found in other subcellular fractions of the renal cortex. Hexokinase, although evident in the isolated brush border, was found prominently associated with other membranous fractions. Phosphoglucomutase and UDPG pyrophosphorylase were localized in the soluble fraction of the renal cortex.


1983 ◽  
Vol 211 (3) ◽  
pp. 553-558 ◽  
Author(s):  
C M Behrens ◽  
C A Enns ◽  
H H Sussman

The molecular structure of human foetal intestinal alkaline phosphatase was defined by high-resolution two-dimensional polyacrylamide-gel electrophoresis and amino acid inhibition studies. Comparison was made with the adult form of intestinal alkaline phosphatase, as well as with alkaline phosphatases isolated from cultured foetal amnion cells (FL) and a human tumour cell line (KB). Two non-identical subunits were isolated from the foetal intestinal isoenzyme, one having same molecular weight and isoelectric point as placental alkaline phosphatase, and the other corresponding to a glycosylated subunit of the adult intestinal enzyme. The FL-cell and KB-cell alkaline phosphatases were also found to contain two subunits similar to those of the foetal intestinal isoenzyme. Characterization of neuraminidase digests of the non-placental subunit showed it to be indistinguishable from the subunits of the adult intestinal isoenzyme. This implies that no new phosphatase structural gene is involved in the transition from the expression of foetal to adult intestinal alkaline phosphatase, but that the molecular changes involve suppression of the placental subunit and loss of neuraminic acid from the non-placental subunit. Enzyme-inhibition studies demonstrated an intermediate response to the inhibitors tested for the foetal intestinal, FL-cell and KB-cell isoenzymes when compared with the placental, adult intestinal and liver forms. This result is consistent with the mixed-subunit structure observed for the former set of isoenzymes. In summary, this study has defined the molecular subunit structure of the foetal intestinal form of alkaline phosphatase and has demonstrated its expression in a human tumour cell line.


2013 ◽  
Vol 41 (7) ◽  
pp. 1425-1432 ◽  
Author(s):  
Murali Subramanian ◽  
Sundeep Paruchury ◽  
Shashyendra Singh Gautam ◽  
Sheelendra Pratap Singh ◽  
Rambabu Arla ◽  
...  

Placenta ◽  
2009 ◽  
Vol 30 (11) ◽  
pp. 939-948 ◽  
Author(s):  
S.L. Straszewski-Chavez ◽  
V.M. Abrahams ◽  
A.B. Alvero ◽  
P.B. Aldo ◽  
Y. Ma ◽  
...  

1983 ◽  
Vol 29 (10) ◽  
pp. 1361-1368 ◽  
Author(s):  
Thomas P. Poirier ◽  
Stanley C. Holt

Capnocytophaga ochracea acid (AcP; EC 3.1.3.2) and alkaline (AlP; EC 3.1.3.1) phosphatase was isolated by Ribi cell disruption and purified by sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS–PAGE.) Both phosphatases eluted from Sephadex G-150 consistent with molecular weights (migration) of 140 000 and 110 000. SDS–PAGE demonstrated a 72 000 and 55 000 subunit molecular migration for AcP and AlP, respectively. The kinetics of activity of purified AcP and AIP on p-nitrophenol phosphate and phosphoseryl residues of the phosphoproteins are presented.


1981 ◽  
Vol 194 (3) ◽  
pp. 857-866 ◽  
Author(s):  
H Galski ◽  
S E Fridovich ◽  
D Weinstein ◽  
N De Groot ◽  
S Segal ◽  
...  

The synthesis and secretion of alkaline phosphatases in vitro by human placental tissue incubated in organ culture were studied. First-trimester placenta synthesizes and secretes two different alkaline phosphatase isoenzymes (heat-labile and heat-stable), whereas in term placenta nearly all the alkaline phosphatase synthesized and secreted is heat-stable. The specific activities of alkaline phosphatases in first-trimester and term placental tissue remain constant throughout the time course of incubation. In the media, specific activities increase with time. Hence, alkaline phosphatase synthesis seems to be the driving force for its own secretion. The rates of synthesis de novo and of alkaline phosphatases were measured. The specific radioactivities of the secreted alkaline phosphatases were higher than the corresponding specific radioactivities in the tissue throughout the entire incubation period. The intracellular distribution of the alkaline phosphatase isoenzymes was compared.


Sign in / Sign up

Export Citation Format

Share Document