scholarly journals The 5- flanking sequences of Drosophila tRNAArg genes control their in vitro transcription in a Drosophila cell extract.

1982 ◽  
Vol 257 (24) ◽  
pp. 14738-14744 ◽  
Author(s):  
T Dingermann ◽  
D J Burke ◽  
S Sharp ◽  
J Schaack ◽  
D Söll
1991 ◽  
Vol 11 (9) ◽  
pp. 4555-4560 ◽  
Author(s):  
M Woontner ◽  
P A Wade ◽  
J Bonner ◽  
J A Jaehning

We report an improved in vitro transcription system for Saccharomyces cerevisiae. Small changes in assay and whole-cell extraction procedures increase selective initiation by RNA polymerase II up to 60-fold over previous conditions (M. Woontner and J. A. Jaehning, J. Biol. Chem. 265:8979-8982, 1990), to levels comparable to those obtained with nuclear extracts. We have found that the simultaneous use of distinguishable templates with and without an upstream activation sequence is critical to the measurement of apparent activation. Transcription from any template was very sensitive to the concentrations of template and nontemplate DNA, extract, and activator (GAL4/VP16). Alterations in reaction conditions led to proportionately greater changes from a template lacking an upstream activation sequence; thus, the apparent ratio of activation is largely dependent on the level of basal transcription. Using optimal conditions for activation, we have also demonstrated activation by a bona fide yeast activator, heat shock transcription factor.


1987 ◽  
Vol 7 (5) ◽  
pp. 1989-1994 ◽  
Author(s):  
R Sen ◽  
D Baltimore

Transfection experiments have led to the identification of three DNA sequences that are responsible for the tissue-specific expression of immunoglobulin genes. As a first step toward characterizing these regulatory phenomena at the biochemical level, we report the development of an in vitro transcription system from cells of the B lymphoid lineage. In these extracts, transcription of the MOPC41 kappa promoter is correctly initiated and dependent on the presence of an upstream sequence element located between -44 and -79 base pairs from the cap site. Second, although standard in vitro transcriptions are not affected by the presence or absence of enhancer sequences, we observed that the addition of polyethylene glycol led to a B-cell extract-specific suppression of transcription from a template that carries an immunoglobulin enhancer.


2007 ◽  
Vol 405 (2) ◽  
pp. 243-249 ◽  
Author(s):  
Yi Liu ◽  
Shunhong Dai ◽  
Roger N. Beachy

Rice (Oryza sativa L.) transcription factors RF2a and RF2b are bZIP (basic leucine zipper) proteins that interact with, and activate transcription from the RTBV (rice tungro bacilliform virus) promoter. Here we characterize the C-terminal domains of RF2a and RF2b: these domains are rich in glutamine and proline/glutamine, respectively. Affinity pull-down assays demonstrated that the C-terminal domains of RF2a and RF2b can associate to form either homodimers or heterodimers; however, they do not interact with other domains of RF2a or RF2b. Results of in vitro transcription assays using a rice whole-cell extract demonstrate that the C-terminal domains of both RF2a and RF2b activate transcription from the RTBV promoter. In addition, dimerization of the RF2a C-terminal domain is involved in regulating the transcription activation function of RF2a. The predicted helical region within the RF2a C-terminal glutamine-rich domain was determined to be involved in inter-molecular dimerization, and contributed to the regulatory functions of RF2a in these assays.


1989 ◽  
pp. 653-666
Author(s):  
JAMES L. MANLEY ◽  
ANDREW FIRE ◽  
MARK SAMUELS ◽  
PHILLIP A. SHARP

1987 ◽  
Vol 7 (5) ◽  
pp. 1989-1994
Author(s):  
R Sen ◽  
D Baltimore

Transfection experiments have led to the identification of three DNA sequences that are responsible for the tissue-specific expression of immunoglobulin genes. As a first step toward characterizing these regulatory phenomena at the biochemical level, we report the development of an in vitro transcription system from cells of the B lymphoid lineage. In these extracts, transcription of the MOPC41 kappa promoter is correctly initiated and dependent on the presence of an upstream sequence element located between -44 and -79 base pairs from the cap site. Second, although standard in vitro transcriptions are not affected by the presence or absence of enhancer sequences, we observed that the addition of polyethylene glycol led to a B-cell extract-specific suppression of transcription from a template that carries an immunoglobulin enhancer.


Cell ◽  
1983 ◽  
Vol 34 (3) ◽  
pp. 881-890 ◽  
Author(s):  
Robert A. Hipskind ◽  
Stuart G. Clarkson

1991 ◽  
Vol 11 (9) ◽  
pp. 4555-4560 ◽  
Author(s):  
M Woontner ◽  
P A Wade ◽  
J Bonner ◽  
J A Jaehning

We report an improved in vitro transcription system for Saccharomyces cerevisiae. Small changes in assay and whole-cell extraction procedures increase selective initiation by RNA polymerase II up to 60-fold over previous conditions (M. Woontner and J. A. Jaehning, J. Biol. Chem. 265:8979-8982, 1990), to levels comparable to those obtained with nuclear extracts. We have found that the simultaneous use of distinguishable templates with and without an upstream activation sequence is critical to the measurement of apparent activation. Transcription from any template was very sensitive to the concentrations of template and nontemplate DNA, extract, and activator (GAL4/VP16). Alterations in reaction conditions led to proportionately greater changes from a template lacking an upstream activation sequence; thus, the apparent ratio of activation is largely dependent on the level of basal transcription. Using optimal conditions for activation, we have also demonstrated activation by a bona fide yeast activator, heat shock transcription factor.


1988 ◽  
Vol 8 (10) ◽  
pp. 4441-4449
Author(s):  
A K Lofquist ◽  
A D Garcia ◽  
S J Sharp

We have studied the mechanism by which 5'-flanking sequences modulate the in vitro transcription of eucaryotic tRNA genes. Using deletion and linker substitution mutagenesis, we have found that the 5'-flanking sequences responsible for the different in vitro transcription levels of three Drosophila tRNA5Asn genes are contained within a discrete region centered 22 nucleotides upstream from the transcription initiation site. In conjunction with the A-box intragenic control region, this upstream transcription-modulatory region functions in the selection mechanism for the site of transcription initiation. Since the transcription-modulatory region directs the position of the start site and the actual sequence of the transcription-modulatory region determines the level of tRNAAsn gene transcription, the possibility is raised that the transcription-modulatory region directs a transcription initiation event similar to open complex formation at procaryotic promoters.


Author(s):  
James L. Manley ◽  
Andrew Fire ◽  
Mark Samuels ◽  
Phillip A. Sharp

Sign in / Sign up

Export Citation Format

Share Document