scholarly journals The role of the N terminus in Tet repressor for tet operator binding determined by a mutational analysis.

1992 ◽  
Vol 267 (3) ◽  
pp. 1945-1952
Author(s):  
C Berens ◽  
L Altschmied ◽  
W Hillen
Biochemistry ◽  
1996 ◽  
Vol 35 (51) ◽  
pp. 16557-16565 ◽  
Author(s):  
Carl J. Miller ◽  
Wenise W. Wong ◽  
Elena Bobkova ◽  
Peter A. Rubenstein ◽  
Emil Reisler

2016 ◽  
Vol 4 (Suppl. 3) ◽  
pp. A4.17
Author(s):  
Fatma Aslı Erdem
Keyword(s):  

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 361
Author(s):  
Rui-Zhu Shi ◽  
Yuan-Qing Pan ◽  
Li Xing

The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.


2013 ◽  
Vol 94 (2) ◽  
pp. 443-452 ◽  
Author(s):  
Gültekin Tamgüney ◽  
Kurt Giles ◽  
Abby Oehler ◽  
Natrina L. Johnson ◽  
Stephen J. DeArmond ◽  
...  

Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.


FEBS Letters ◽  
1997 ◽  
Vol 416 (2) ◽  
pp. 217-220 ◽  
Author(s):  
David Arboledas ◽  
Nieves Olmo ◽  
Mª Antonia Lizarbe ◽  
Javier Turnay

2005 ◽  
Vol 86 (4) ◽  
pp. 1103-1107 ◽  
Author(s):  
Blanca García-Barreno ◽  
John Steel ◽  
Monica Payá ◽  
Luis Martínez-Sobrido ◽  
Teresa Delgado ◽  
...  

The reactivity of a panel of 12 monoclonal antibodies raised against the human respiratory syncytial virus 22 kDa (22K) protein was tested by Western blotting with a set of 22K deletion mutants. The results obtained identified sequences in the C-terminal half of the 22K polypeptide required for integrity of most antibody epitopes, except for epitope 112, which was lost in mutants with short N-terminal deletions. This antibody, in contrast to the others, failed to immunoprecipitate the native 22K protein, indicating that the N terminus of this protein is buried in the native molecule and exposed only under the denaturing conditions of Western blotting. In addition, N-terminal deletions that abolished reactivity with monoclonal antibody 112 also inhibited phosphorylation of the 22K protein previously identified at Ser-58 and Ser-61, suggesting that the N terminus is important in regulating the 22K protein phosphorylation status, most likely as a result of its requirement for protein folding.


2014 ◽  
Vol 106 (7) ◽  
pp. 1520-1527 ◽  
Author(s):  
Ling-Hsien Tu ◽  
Arnaldo L. Serrano ◽  
Martin T. Zanni ◽  
Daniel P. Raleigh

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Alexander B. Cain ◽  
Shu Yu ◽  
Li Tian

Methylated flavones, and tricin in particular, have been implicated in protecting wheat plants against a variety of biotic and abiotic stresses. Methylated flavones are produced via O-methylation of the hydroxyl groups in flavones, which is catalyzed by O-methyltransferases (OMTs). To examine the role of wheat OMT2 in methylated flavone biosynthesis and facilitate interrogation of tricin functions in wheat-environment interactions, loss-of-function mutants of OMT2 homoeologs, omt-A2 and omt-B2, were identified from a tetraploid wheat Targeting Induced Local Lesions in Genomes (TILLING) mutant population and crossed to generate the omt-A2omt-B2 double mutant. Although tricin and most other soluble phenolics did not differ in leaves and glumes of TILLING control and the omt-A2, omt-B2, and omt-A2 omt-B2 mutants, chlorogenic acid was increased in glumes of omt-A2 omt-B2 relative to TILLING control, suggesting that it might serve as a substrate for OMT2. The omt2 mutant lines showed similar growth phenotypes as well as comparable lignin deposition in cell walls of stems compared to TILLING control. These results collectively suggest that OMT2 and its close homolog OMT1 may possess overlapping activities in tricin production, with OMT1 compensating for the missing OMT2 activities in the omt2 mutant lines.


Sign in / Sign up

Export Citation Format

Share Document