scholarly journals The Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi

1963 ◽  
Vol 238 (12) ◽  
pp. 4058-4062 ◽  
Author(s):  
R.M. Smillie ◽  
R.P. Levine
Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 276
Author(s):  
Wanying Chen ◽  
Bo Jia ◽  
Junyu Chen ◽  
Yujiao Feng ◽  
Yue Li ◽  
...  

The mutual shading among individual field-grown maize plants resulting from high planting density inevitably reduces leaf photosynthesis, while regulating the photosynthetic transport chain has a strong impact on photosynthesis. However, the effect of high planting density on the photosynthetic electron transport chain in maize currently remains unclear. In this study, we simultaneously measured prompt chlorophyll a fluorescence (PF), modulated 820 nm reflection (MR) and delayed chlorophyll a fluorescence (DF) in order to investigate the effect of high planting density on the photosynthetic electron transport chain in two maize hybrids widely grown in China. PF transients demonstrated a gradual reduction in their signal amplitude with increasing planting density. In addition, high planting density induced positive J-step and G-bands of the PF transients, reduced the values of PF parameters PIABS, RC/CSO, TRO/ABS, ETO/TRO and REO/ETO, and enhanced ABS/RC and N. MR kinetics showed an increase of their lowest point with increasing high planting density, and thus the values of MR parameters VPSI and VPSII-PSI were reduced. The shapes of DF induction and decay curves were changed by high planting density. In addition, high planting density reduced the values of DF parameters I1, I2, L1 and L2, and enhanced I2/I1. These results suggested that high planting density caused harm on multiple components of maize photosynthetic electron transport chain, including an inactivation of PSII RCs, a blocked electron transfer between QA and QB, a reduction in PSI oxidation and re-reduction activities, and an impaired PSI acceptor side. Moreover, a comparison between PSII and PSI activities demonstrated the greater effect of plant density on the former.


2020 ◽  
Vol 13 (9) ◽  
pp. 2903-2914 ◽  
Author(s):  
Andrey Kanygin ◽  
Yuval Milrad ◽  
Chandrasekhar Thummala ◽  
Kiera Reifschneider ◽  
Patricia Baker ◽  
...  

Photosystem I-hydrogenase chimera intercepts electron flow directly from the photosynthetic electron transport chain and directs it to hydrogen production.


2015 ◽  
Vol 6 (2) ◽  
pp. 50 ◽  
Author(s):  
Vetoshkina D. V. ◽  
Borisova-Mubarakshina M. M. ◽  
Naydov I. A. ◽  
Kozuleva M. A. ◽  
Ivanov B. N.

In this study we describe the mechanisms of reactive oxygen species (ROS) production in the photosynthetic electron transport chain of higher plants chloroplasts under illumination. We implement an improved method for the measurement of hydrogen peroxide (H2O2) production in lipid phase of photosynthetic membranes of chloroplasts. Total rate of H2O2 production and the production within the thylakoid membrane under operation of photosynthetic electron transport chain is evaluated. Obtained data show that even in the presence of an efficient electron acceptor, methyl viologen, an increase in light intensity leads to an increase in H2O2 production mainly within the thylakoid membranes. The role of H2O2 produced within the photosynthetic biological membrane is discussed.


2018 ◽  
Vol 45 (2) ◽  
pp. 102 ◽  
Author(s):  
Boris N. Ivanov ◽  
Maria M. Borisova-Mubarakshina ◽  
Marina A. Kozuleva

Reduction of O2 molecule to superoxide radical, O2•−, in the photosynthetic electron transport chain is the first step of hydrogen peroxide, H2O2, production in chloroplasts in the light. The mechanisms of O2 reduction by ferredoxin, by the components of the plastoquinone pool, and by the electron transfer cofactors in PSI are analysed. The data indicating that O2•− and H2O2 can be produced both outside and within thylakoid membrane are presented. The H2O2 production in the chloroplast stroma is described as a result of either dismutation of O2•− or its reduction by stromal reductants. Formation of H2O2 within thylakoid membrane in the reaction of O2•− with plastohydroquinone is examined. The significance of both ways of H2O2 formation for specificity of the signal being sent by photosynthetic electron transport chain to cell adaptation systems is discussed.


Sign in / Sign up

Export Citation Format

Share Document