scholarly journals Independent binding of interleukin-1 alpha and interleukin-1 beta to type I and type II interleukin-1 receptors.

1993 ◽  
Vol 268 (4) ◽  
pp. 2513-2524
Author(s):  
J. Slack ◽  
C.J. McMahan ◽  
S. Waugh ◽  
K. Schooley ◽  
M.K. Spriggs ◽  
...  
1993 ◽  
Vol 268 (14) ◽  
pp. 10490-10494
Author(s):  
A. Heguy ◽  
C.T. Baldari ◽  
S. Censini ◽  
P. Ghiara ◽  
J.L. Telford
Keyword(s):  
T Cells ◽  
Type I ◽  

1995 ◽  
Vol 269 (6) ◽  
pp. E1083-E1088
Author(s):  
A. Joseph ◽  
A. Kumar ◽  
N. A. O'Connell ◽  
R. K. Agarwal ◽  
A. R. Gwosdow

A recent study from this laboratory [A. R. Gwosdow, N. A. O'Connell, and A. B. Abou-Samra. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E461-E466, 1992] showed that the inflammatory mediator interleukin-1 alpha (IL-1 alpha) stimulates catecholamine release from primary cultures of rat adrenal cells. The present studies were conducted to determine whether 1) IL-1 alpha stimulates catecholamine/dopamine release from the adrenal medullary cell line PC-12 and 2) the adenosine 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) pathway is involved in IL-1 alpha-induced dopamine release from PC-12 cells. The results indicate that IL-1 alpha significantly (P < 0.05) elevated dopamine release after a 24-h incubation period. IL-1 alpha did not stimulate cAMP accumulation at any time period between 5 min and 2 h. In contrast, forskolin-treated cells elevated (P < 0.05) intracellular cAMP levels and increased dopamine release. Because IL-1 alpha did not affect cAMP accumulation, the effect of IL-1 alpha on PKA activity was investigated. IL-1 alpha increased (P < 0.05) PKA activity at 15 and 30 min and returned to control levels by 1 h. Forskolin also increased (P < 0.05) PKA activity. The type of PKA activated (P < 0.05) by IL-1 alpha was type II PKA. In contrast, forskolin activated (P < 0.05) type I and type II PKA. Inhibition of PKA with the PKA inhibitor H-8 blocked PKA activity and dopamine secretion by both IL-1 alpha and forskolin in PC-12 cells. These observations demonstrate that 1) IL-1 alpha stimulated dopamine release from PC-12 cells by activating PKA, 2) the mechanism of IL-1 alpha activation of PKA does not involve detectable increases in intracellular cAMP accumulation, and 3) IL-1 alpha activates type II PKA, which is used by IL-1 alpha to stimulate dopamine secretion from PC-12 cells.


1992 ◽  
Vol 153 (3) ◽  
pp. 583-588 ◽  
Author(s):  
Ann L. Akeson ◽  
Laura B. Mosher ◽  
Connie W. Woods ◽  
Kendra K. Schroeder ◽  
Terry L. Bowlin

1997 ◽  
Vol 56 (6) ◽  
pp. 1513-1526 ◽  
Author(s):  
Edith Gomez ◽  
Gérard Morel ◽  
Annie Cavalier ◽  
Marie-Odile Liénard ◽  
France Haour ◽  
...  

2015 ◽  
Vol 110 ◽  
pp. 1-13 ◽  
Author(s):  
Eva Correia-Álvarez ◽  
Enrique Gómez ◽  
David Martín ◽  
Susana Carrocera ◽  
Silvia Pérez ◽  
...  

2006 ◽  
Vol 109 (3-4) ◽  
pp. 219-231 ◽  
Author(s):  
Rikio Kirisawa ◽  
Norikazu Hashimoto ◽  
Mizuho Tazaki ◽  
Hitoki Yamanaka ◽  
Risako Ishii ◽  
...  

1994 ◽  
Vol 179 (2) ◽  
pp. 739-743 ◽  
Author(s):  
F Re ◽  
M Muzio ◽  
M De Rossi ◽  
N Polentarutti ◽  
J G Giri ◽  
...  

Whereas the signaling function of the interleukin 1 (IL-1) receptor type I (IL-1R I) has been well documented, the type II "receptor" has been suggested to act as a decoy target for this cytokine. Since IL-1 may represent a key target of the immunomodulatory and antiinflammatory properties of glucocorticoids (GC), the aim of this study was to investigate the effects of dexamethasone (Dex) on IL-1R expression in human polymorphonuclear leukocytes (PMN), which express predominantly the type II molecule (IL-1R II). We found that Dex augments the levels of steady state transcripts encoding the IL-1R I and, most prominently, those of IL-1R II. Dex induced both transcripts via transcription-dependent mechanisms and by prolongation of the mRNAs half-lives. Inhibition of protein synthesis superinduced basal and Dex-augmented IL-1R II mRNA, whereas it completely inhibited the induction by Dex of IL-1R I transcripts. Induction of IL-1R II mRNA by Dex was associated with augmented membrane expression and release of the type II IL-1 binding molecule. This effect was mediated by the GC receptor. Other steroids (17 beta-estradiol, progesterone, and testosterone) were ineffective. The concentrations of IL-1 alpha and IL-1 receptor antagonist required to displace the binding of IL-1 beta to the soluble form of the decoy molecule induced by Dex from PMN were, respectively, 100 and 2 times higher compared with IL-1 beta. The induction by Dex of the type II receptor, a decoy molecule for IL-1, may contribute to the immunosuppressive and antiinflammatory activities of Dex.


Sign in / Sign up

Export Citation Format

Share Document