scholarly journals Crystals of the trp repressor-operator complex suitable for X-ray diffraction analysis.

1987 ◽  
Vol 262 (10) ◽  
pp. 4917-4921 ◽  
Author(s):  
A. Joachimiak ◽  
R.Q. Marmorstein ◽  
R.W. Schevitz ◽  
W. Mandecki ◽  
J.L. Fox ◽  
...  
1993 ◽  
Vol 58 (12) ◽  
pp. 2924-2935 ◽  
Author(s):  
Jane H. Jones ◽  
Bohumil Štíbr ◽  
John D. Kennedy ◽  
Mark Thornton-Pett

Thermolysis of [8,8-(PMe2Ph)2-nido-8,7-PtCB9H11] in boiling toluene solution results in an elimination of the platinum centre and cluster closure to give the ten-vertex closo species [6-(PMe2Ph)-closo-1-CB9H9] in 85% yield as a colourles air stable solid. The product is characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Crystals (from hexane-dichloromethane) are monoclinic, space group P21/c, with a = 903.20(9), b = 1 481.86(11), c = 2 320.0(2) pm, β = 97.860(7)° and Z = 8, and the structure has been refined to R(Rw) = 0.045(0.051) for 3 281 observed reflections with Fo > 2.0σ(Fo). The clean high-yield elimination of a metal centre from a polyhedral metallaborane or metallaheteroborane species is very rare.


2008 ◽  
Vol 73 (8-9) ◽  
pp. 1205-1221 ◽  
Author(s):  
Jiří Zedník ◽  
Jan Sedláček ◽  
Jan Svoboda ◽  
Jiří Vohlídal ◽  
Dmitrij Bondarev ◽  
...  

Dinuclear rhodium(I) η2:η2-cycloocta-1,5-diene (series a) and η2:η2-norborna-2,5-diene (series b) complexes with μ-RCOO- ligands, where R is linear C21H43 (complexes 1a, 1b), CH2CMe3 (2a, 2b), 1-adamantyl (3a, 3b) and benzyl (4a, 4b), have been prepared and characterized by spectroscopic methods. Structures of complexes 2b, 3a and 4a were determined by X-ray diffraction analysis. Complexes prepared show low to moderate catalytic activity in polymerization of phenylacetylene in THF giving high-cis-transoid polymers, but they show only oligomerization activity in dichloromethane.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. K. Eseev ◽  
A. A. Goshev ◽  
K. A. Makarova ◽  
D. N. Makarov

AbstractIt is well known that the scattering of ultrashort pulses (USPs) of an electromagnetic field in the X-ray frequency range can be used in diffraction analysis. When such USPs are scattered by various polyatomic objects, a diffraction pattern appears from which the structure of the object can be determined. Today, there is a technical possibility of creating powerful USP sources and the analysis of the scattering spectra of such pulses is a high-precision instrument for studying the structure of matter. As a rule, such scattering occurs at a frequency close to the carrier frequency of the incident USP. In this work, it is shown that for high-power USPs, where the magnetic component of USPs cannot be neglected, scattering at the second harmonic appears. The scattering of USPs by the second harmonic has a characteristic diffraction pattern which can be used to judge the structure of the scattering object; combining the scattering spectra at the first and second harmonics therefore greatly enhances the diffraction analysis of matter. Scattering spectra at the first and second harmonics are shown for various polyatomic objects: examples considered are 2D and 3D materials such as graphene, carbon nanotubes, and hybrid structures consisting of nanotubes. The theory developed in this work can be applied to various multivolume objects and is quite simple for X-ray structural analysis, because it is based on analytical expressions.


Sign in / Sign up

Export Citation Format

Share Document