scholarly journals Protein synthesis in yeast. Isolation of variant forms of elongation factor 1 from the yeast Saccharomyces cerevisiae.

1986 ◽  
Vol 261 (27) ◽  
pp. 12599-12603
Author(s):  
S K Saha ◽  
K Chakraburtty
1987 ◽  
Vol 7 (3) ◽  
pp. 998-1003
Author(s):  
M Altmann ◽  
C Handschin ◽  
H Trachsel

We have isolated genomic and cDNA clones encoding protein synthesis initiation factor eIF-4E (mRNA cap-binding protein) of the yeast Saccharomyces cerevisiae. Their identity was established by expression of a cDNA in Escherichia coli. This cDNA encodes a protein indistinguishable from purified eIF-4E in terms of molecular weight, binding to and elution from m7GDP-agarose affinity columns, and proteolytic peptide pattern. The eIF-4E gene was isolated by hybridization of cDNA to clones of a yeast genomic library. The gene lacks introns, is present in one copy per haploid genome, and encodes a protein of 213 amino acid residues. Gene disruption experiments showed that the gene is essential for growth.


2002 ◽  
Vol 364 (3) ◽  
pp. 857-862 ◽  
Author(s):  
Katarzyna POTRYKUS ◽  
Sylwia BARAŃSKA ◽  
Alicja WĘGRZYN ◽  
Grzegorz WĘGRZYN

Previous studies indicated during replication of plasmids derived from bacteriophage λ (the so-called λ plasmids), that, once assembled, replication complex can be inherited by one of the two daughter plasmid copies after each replication round, and may function in subsequent replication rounds. It seems that similar processes occur during replication of other DNA molecules, including chromosomes of the yeast Saccharomyces cerevisiae. However, apart from some suggestions based on genetic experiments, composition of the λ heritable replication complex remains unknown. In amino acid-starved Escherichia coli relA mutants, replication of λ plasmid DNA is carried out exclusively by the heritable replication complex as assembly of new complexes is impaired due to inhibition of protein synthesis. Here, using a procedure based on in vivo cross-linking, cell lysis, immunoprecipitation with specific sera, de-cross-linking and PCR analysis, we demonstrate that the λ heritable replication complex consists of O, P, DnaB and, perhaps surprisingly, DnaK proteins.


1987 ◽  
Vol 244 (2) ◽  
pp. 287-294 ◽  
Author(s):  
T G Obrig ◽  
T P Moran ◽  
J E Brown

The effect of Shiga toxin, from Shigella dysenteriae 1, on the component reactions of peptide elongation were investigated. Enzymic binding of [3H]phenylalanine-tRNA to reticulocyte ribosomes was inhibited by 50% at 7 nM toxin. Elongation factor 1 (eEF-1)-dependent GTPase activity was also inhibited. Both reactions were not restored by addition of excess eEF-1 protein. In contrast, toxin concentrations of 200 nM were required to inhibit by 50% the elongation factor 2 (eEF-2)-dependent translocation of aminoacyl-tRNA on ribosomes. Addition of excess eEF-2 restored translocation activity. The eEF-2-dependent GTPase activity was unaffected at toxin concentrations below 100 nM, and Shiga-toxin concentrations of up to 1,000 nM did not affect either GTP.eEF-2.ribosome complex-formation or peptidyltransferase activity. Thus Shiga toxin closely resembles alpha-sarcin in action, both being primary inhibitors of eEF-1-dependent reactions. In contrast, the 60 S ribosome inactivators ricin and phytolaccin are primary inhibitors of eEF-2-dependent reactions of peptide elongation.


Sign in / Sign up

Export Citation Format

Share Document