scholarly journals Accurate initiation by RNA polymerase II in a whole cell extract from Saccharomyces cerevisiae.

1990 ◽  
Vol 265 (16) ◽  
pp. 8979-8982
Author(s):  
M Woontner ◽  
J A Jaehning
1991 ◽  
Vol 11 (9) ◽  
pp. 4555-4560 ◽  
Author(s):  
M Woontner ◽  
P A Wade ◽  
J Bonner ◽  
J A Jaehning

We report an improved in vitro transcription system for Saccharomyces cerevisiae. Small changes in assay and whole-cell extraction procedures increase selective initiation by RNA polymerase II up to 60-fold over previous conditions (M. Woontner and J. A. Jaehning, J. Biol. Chem. 265:8979-8982, 1990), to levels comparable to those obtained with nuclear extracts. We have found that the simultaneous use of distinguishable templates with and without an upstream activation sequence is critical to the measurement of apparent activation. Transcription from any template was very sensitive to the concentrations of template and nontemplate DNA, extract, and activator (GAL4/VP16). Alterations in reaction conditions led to proportionately greater changes from a template lacking an upstream activation sequence; thus, the apparent ratio of activation is largely dependent on the level of basal transcription. Using optimal conditions for activation, we have also demonstrated activation by a bona fide yeast activator, heat shock transcription factor.


1991 ◽  
Vol 11 (7) ◽  
pp. 3515-3521 ◽  
Author(s):  
A Krauskopf ◽  
E Bengal ◽  
Y Aloni

We have previously reported that both in vivo and in vitro, RNA polymerase II pauses or prematurely terminates transcription at a specific attenuation site located 142 to 147 nucleotides downstream from the P4 promoter of minute virus of mice (MVM). In this report, we show that an in vitro block to transcription elongation in HeLa whole-cell extract occurs at elevated KCl concentrations (0.2 to 1.5 M) but not at the standard KCl concentration (50 mM). Briefly initiated transcription complexes, devoid of dissociated elongation factors by passage through a Sephacryl S-1000 column at 0.3 M KCl, were allowed to elongate the briefly initiated nascent RNA, and a block to transcription elongation at the attenuation site was observed independently of the KCl concentration at the time of elongation. Moreover, the block to elongation was overcome by the addition, during elongation, to the column of purified complexes of whole-cell extract from EA cells but not from MVM-infected EA cells or HeLa cells. The general transcription factors IIF and IIX were also shown to alleviate this block to transcription elongation. On the basis of these results, we suggest that the block to elongation at the MVM attenuation site observed late in MVM infection results, at least in part, from the inactivation of the general transcription elongation factors.


1991 ◽  
Vol 11 (9) ◽  
pp. 4555-4560 ◽  
Author(s):  
M Woontner ◽  
P A Wade ◽  
J Bonner ◽  
J A Jaehning

We report an improved in vitro transcription system for Saccharomyces cerevisiae. Small changes in assay and whole-cell extraction procedures increase selective initiation by RNA polymerase II up to 60-fold over previous conditions (M. Woontner and J. A. Jaehning, J. Biol. Chem. 265:8979-8982, 1990), to levels comparable to those obtained with nuclear extracts. We have found that the simultaneous use of distinguishable templates with and without an upstream activation sequence is critical to the measurement of apparent activation. Transcription from any template was very sensitive to the concentrations of template and nontemplate DNA, extract, and activator (GAL4/VP16). Alterations in reaction conditions led to proportionately greater changes from a template lacking an upstream activation sequence; thus, the apparent ratio of activation is largely dependent on the level of basal transcription. Using optimal conditions for activation, we have also demonstrated activation by a bona fide yeast activator, heat shock transcription factor.


1991 ◽  
Vol 11 (7) ◽  
pp. 3515-3521
Author(s):  
A Krauskopf ◽  
E Bengal ◽  
Y Aloni

We have previously reported that both in vivo and in vitro, RNA polymerase II pauses or prematurely terminates transcription at a specific attenuation site located 142 to 147 nucleotides downstream from the P4 promoter of minute virus of mice (MVM). In this report, we show that an in vitro block to transcription elongation in HeLa whole-cell extract occurs at elevated KCl concentrations (0.2 to 1.5 M) but not at the standard KCl concentration (50 mM). Briefly initiated transcription complexes, devoid of dissociated elongation factors by passage through a Sephacryl S-1000 column at 0.3 M KCl, were allowed to elongate the briefly initiated nascent RNA, and a block to transcription elongation at the attenuation site was observed independently of the KCl concentration at the time of elongation. Moreover, the block to elongation was overcome by the addition, during elongation, to the column of purified complexes of whole-cell extract from EA cells but not from MVM-infected EA cells or HeLa cells. The general transcription factors IIF and IIX were also shown to alleviate this block to transcription elongation. On the basis of these results, we suggest that the block to elongation at the MVM attenuation site observed late in MVM infection results, at least in part, from the inactivation of the general transcription elongation factors.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 737-747 ◽  
Author(s):  
Jacques Archambault ◽  
David B Jansma ◽  
James D Friesen

Abstract In the yeast Saccharomyces cerevisiae, mutations in genes encoding subunits of RNA polymerase II (RNAPII) often give rise to a set of pleiotropic phenotypes that includes temperature sensitivity, slow growth and inositol auxotrophy. In this study, we show that these phenotypes can be brought about by a reduction in the intracellular concentration of RNAPII. Underproduction of RNAPII was achieved by expressing the gene (RPO21), encoding the largest subunit of the enzyme, from the LEU2 promoter or a weaker derivative of it, two promoters that can be repressed by the addition of leucine to the growth medium. We found that cells that underproduced RPO21 were unable to derepress fully the expression of a reporter gene under the control of the INO1 UAS. Our results indicate that temperature sensitivity, slow growth and inositol auxotrophy is a set of phenotypes that can be caused by lowering the steady-state amount of RNAPII; these results also lead to the prediction that some of the previously identified RNAPII mutations that confer this same set of phenotypes affect the assembly/stability of the enzyme. We propose a model to explain the hypersensitivity of INO1 transcription to mutations that affect components of the RNAPII transcriptional machinery.


Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Ya-Wen Chang ◽  
Susie C Howard ◽  
Yelena V Budovskaya ◽  
Jasper Rine ◽  
Paul K Herman

Abstract Saccharomyces cerevisiae cells enter into a distinct resting state, known as stationary phase, in response to specific types of nutrient deprivation. We have identified a collection of mutants that exhibited a defective transcriptional response to nutrient limitation and failed to enter into a normal stationary phase. These rye mutants were isolated on the basis of defects in the regulation of YGP1 expression. In wild-type cells, YGP1 levels increased during the growth arrest caused by nutrient deprivation or inactivation of the Ras signaling pathway. In contrast, the levels of YGP1 and related genes were significantly elevated in the rye mutants during log phase growth. The rye defects were not specific to this YGP1 response as these mutants also exhibited multiple defects in stationary phase properties, including an inability to survive periods of prolonged starvation. These data indicated that the RYE genes might encode important regulators of yeast cell growth. Interestingly, three of the RYE genes encoded the Ssn/Srb proteins, Srb9p, Srb10p, and Srb11p, which are associated with the RNA polymerase II holoenzyme. Thus, the RNA polymerase II holoenzyme may be a target of the signaling pathways responsible for coordinating yeast cell growth with nutrient availability.


Sign in / Sign up

Export Citation Format

Share Document