elongation factors
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 32)

H-INDEX

63
(FIVE YEARS 4)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 283-283
Author(s):  
Kaustav Mukherjee ◽  
James J Bieker ◽  
Venkata Srinivas Mohan Nimai Dangeti

Abstract EKLF/Klf1 is a master transcriptional activator of critical genes that regulate both erythroid fate specification and terminal erythroid maturation. EKLF binds to DNA using three Zn-fingers at its C-terminus while the N-terminus constitutes a transcription activation domain (TAD) that interacts with various transcription co-factors including the protein acetylase CBP. An autosomal semi-dominant mutation at a single residue (E339D) in the mouse EKLF Zn-finger leads to Neonatal anemia (Nan). A mutation at the same residue in human EKLF (E325K) causes Congenital Dyserythropoietic Anemia type IV (CDA IV). Nan/Nan mice show lethality at embryonic day E10-11, in contrast to EKLF-/- homozygotes that survive until E15. Nan/+ heterozygotes survive to adulthood but are severely anemic, unlike EKLF+/- heterozygotes that display no aberrant phenotypes. The Nan-EKLF protein has an altered DNA binding specificity leading to a vastly altered transcriptome by two mechanisms. First, Nan-EKLF binding causes ectopic gene expression that significantly contributes to the severe anemia in Nan/+. Second, a subset of EKLF targets is downregulated in heterozygous Nan/+ mutants despite the presence of one copy of wild type EKLF, exacerbating the anemia. Thus, uncovering the mechanism by which gene expression is altered in Nan/+ may illuminate how EKLF normally activates transcription of its targets in vivo. To this end, we first examined the global occupancy of RNA Pol II phospho-Ser5 (as a paused mark) and phospho-Ser2 (as an elongation mark) in the mouse E13.5 fetal liver as a source of primary definitive erythroid cells. At promoters of ectopically expressed genes, where only Nan-EKLF (but not WT) binding is expected, we predominantly find increased levels of both paused and elongating RNA Pol II suggesting that Nan-EKLF binding activates transcription at ectopic genes by RNA Pol II recruitment and promoter proximal pausing. Further, we find increased levels of H3K27ac and CBP occupancy at these sites indicating that the mechanism of Pol II recruitment relies on CBP-mediated H3K27 acetylation and increased chromatin accessibility. Overall, this suggests robust pioneering activity of Nan-EKLF likely mediated by the interaction of its TAD with the CBP/p300 acetylase complex. At genes downregulated in Nan/+ we find two major patterns of Pol II occupancy. One is the converse of that seen at ectopic genes wherein there is a concomitant decrease in both Pol II p-Ser5 and p-Ser2 levels, along with lower H3K27ac and CBP levels suggesting EKLF gene activation has been lost at these sites in Nan/+. This includes cell cycle EKLF targets such as E2f2 and Rgcc. The second set of genes have comparable levels of p-Ser5 (paused) Pol II in Nan/+ and WT, but lower levels of p-Ser2 (elongating) Pol II in Nan/+. This suggests that although Pol II is being recruited to the TSS and pauses effectively, the pause-release step leading to effective transcription elongation is impaired. This subset includes important EKLF targets such as Bcl11a, Pax7, Xpo7, and several membrane transporters. As expected, CBP and H3K27ac levels are similar in WT and Nan/+ at these sites. To determine the cause of impaired RNA Pol II pause-release we examined the global occupancies of key transcription elongation factors such as P-TEFb and NELF. We find that levels of NELF, a negative elongation factor, remain unchanged in WT and Nan/+. However, levels of the P-TEFb subunit Cdk9, a positive elongation factor that facilitates release of paused RNA Pol II, is significantly lower at the TSS of these genes in Nan/+. This suggests that in Nan/+, possible reduction or loss of EKLF binding at some EKLF target promoters impairs effective recruitment of positive transcription elongation factors, resulting in a failure to efficiently release paused RNA Pol II. This causes downregulation of these EKLF target genes and contributes to the severe anemic phenotypes of the Nan mouse. We conclude that: EKLF exhibits expression control of its target genes at both the transcriptional initiation and elongation steps in vivo; EKLF can act as a pioneer transcription factor and increase chromatin accessibility through H3K27 acetylation by CBP leading to recruitment and pausing of RNA Pol II; and EKLF recruits the positive transcription elongation complex P-TEFb, enabling the controlled release of paused RNA Pol II at transcription start sites of a select group of its targets. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Xuhong Yu ◽  
Pascal G.P. Martin ◽  
Yixiang Zhang ◽  
Jonathan C. Trinidad ◽  
Feifei Xu ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1054
Author(s):  
Nur Firdaus Isa ◽  
Olivier Bensaude ◽  
Nadiah C. Aziz ◽  
Shona Murphy

The Herpes Simplex Virus (HSV-1) immediate-early protein ICP22 interacts with cellular proteins to inhibit host cell gene expression and promote viral gene expression. ICP22 inhibits phosphorylation of Ser2 of the RNA polymerase II (pol II) carboxyl-terminal domain (CTD) and productive elongation of pol II. Here we show that ICP22 affects elongation of pol II through both the early-elongation checkpoint and the poly(A)-associated elongation checkpoint of a protein-coding gene model. Coimmunoprecipitation assays using tagged ICP22 expressed in human cells and pulldown assays with recombinant ICP22 in vitro coupled with mass spectrometry identify transcription elongation factors, including P-TEFb, additional CTD kinases and the FACT complex as interacting cellular factors. Using a photoreactive amino acid incorporated into ICP22, we found that L191, Y230 and C225 crosslink to both subunits of the FACT complex in cells. Our findings indicate that ICP22 interacts with critical elongation regulators to inhibit transcription elongation of cellular genes, which may be vital for HSV-1 pathogenesis. We also show that the HSV viral activator, VP16, has a region of structural similarity to the ICP22 region that interacts with elongation factors, suggesting a model where VP16 competes with ICP22 to deliver elongation factors to viral genes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Elena E. Grintsevich ◽  
Giasuddin Ahmed ◽  
Anush A. Ginosyan ◽  
Heng Wu ◽  
Shannon K. Rich ◽  
...  

AbstractCellular events require the spatiotemporal interplay between actin assembly and actin disassembly. Yet, how different factors promote the integration of these two opposing processes is unclear. In particular, cellular monomeric (G)-actin is complexed with profilin, which inhibits spontaneous actin nucleation but fuels actin filament (F-actin) assembly by elongation-promoting factors (formins, Ena/VASP). In contrast, site-specific F-actin oxidation by Mical promotes F-actin disassembly and release of polymerization-impaired Mical-oxidized (Mox)-G-actin. Here we find that these two opposing processes connect with one another to orchestrate actin/cellular remodeling. Specifically, we find that profilin binds Mox-G-actin, yet these complexes do not fuel elongation factors’-mediated F-actin assembly, but instead inhibit polymerization and promote further Mox-F-actin disassembly. Using Drosophila as a model system, we show that similar profilin–Mical connections occur in vivo – where they underlie F-actin/cellular remodeling that accompanies Semaphorin–Plexin cellular/axon repulsion. Thus, profilin and Mical combine to impair F-actin assembly and promote F-actin disassembly, while concomitantly facilitating cellular remodeling and plasticity.


Author(s):  
Arnika Przybylska ◽  
Maciej Spychalski

Abstract Background Meloidogyne arenaria is an economically important root-knot nematode (RKN) species whose hosts include maize (Zea mays). The plant response to RKN infection activates many cellular mechanisms, among others, changes in the expression level of genes encoding transcription and elongation factors as well as proteins related to cell wall organization. Methods and results This study is aimed at characterization of expression of selected transcription and elongation factors encoding the genes WRKY53, EF1a, and EF1b as well as the ones encoding two proteins associated with cell wall functioning (glycine-rich RNA-binding protein, GRP and polygalacturonase, PG) during the maize response to M. arenaria infection. The changes in the relative level of expression of genes encoding these proteins were assessed using the reverse transcription-quantitative real-time PCR. The material studied were leaves and root samples collected from four maize varieties showing different susceptibilities toward M. arenaria infection, harvested at three different time points. Significant changes in the expression level of GRP between susceptible and tolerant varieties were observed. Conclusions Results obtained in the study suggest pronounced involvement of glycine-rich RNA-binding protein and EF1b in the maize response and resistance to RKN.


2021 ◽  
Author(s):  
Nur Firdaus Isa ◽  
Olivier Bensaude ◽  
Nadiah C. Aziz ◽  
Shona Murphy

The Herpes Simplex Virus (HSV-1) immediate early protein ICP22 interacts with cellular proteins to inhibit host cell gene expression and promote viral gene expression. ICP22 inhibits phosphorylation of Ser2 of the RNA polymerase II (pol II) carboxyl-terminal domain (CTD) and productive elongation of pol II. Here we show that ICP22 affects elongation of pol II through both the early-elongation checkpoint and the poly(A)-associated elongation checkpoint on a protein-coding gene model. Coimmunoprecipitation assays using tagged ICP22 expressed in human cells and pulldown assays with recombinant ICP22 in vitro coupled with mass spectrometry identify transcription elongation factors, including P-TEFb, additional CTD kinases and the FACT complex as interacting cellular factors. Using a photoreactive amino acid incorporated into ICP22, we found that L191, Y230 and C225 crosslink to both subunits of the FACT complex in cells.  Our findings indicate that ICP22 physically interacts with critical elongation regulators to inhibit transcription elongation of cellular genes, which may be vital for HSV-1 pathogenesis. We also show that the HSV viral activator, VP16 has a region of structural similarity to the ICP22 region that interacts with elongation factors, suggesting a model where VP16 competes with ICP22 to deliver elongation factors to viral genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Albert Weixlbaumer ◽  
Felix Grünberger ◽  
Finn Werner ◽  
Dina Grohmann

The lack of a nucleus is the defining cellular feature of bacteria and archaea. Consequently, transcription and translation are occurring in the same compartment, proceed simultaneously and likely in a coupled fashion. Recent cryo-electron microscopy (cryo-EM) and tomography data, also combined with crosslinking-mass spectrometry experiments, have uncovered detailed structural features of the coupling between a transcribing bacterial RNA polymerase (RNAP) and the trailing translating ribosome in Escherichia coli and Mycoplasma pneumoniae. Formation of this supercomplex, called expressome, is mediated by physical interactions between the RNAP-bound transcription elongation factors NusG and/or NusA and the ribosomal proteins including uS10. Based on the structural conservation of the RNAP core enzyme, the ribosome, and the universally conserved elongation factors Spt5 (NusG) and NusA, we discuss requirements and functional implications of transcription-translation coupling in archaea. We furthermore consider additional RNA-mediated and co-transcriptional processes that potentially influence expressome formation in archaea.


2021 ◽  
Author(s):  
Jun Xu ◽  
Jenny Chong ◽  
Dong Wang

Abstract Transcription elongation can be affected by numerous types of obstacles, such as nucleosome, pausing sequences, DNA lesions and non-B-form DNA structures. Spt4/5 and Elf1 are conserved transcription elongation factors that promote RNA polymerase II (Pol II) bypass of nucleosome and pausing sequences. Importantly, genetic studies have shown that Spt4/5 plays essential roles in the transcription of expanded nucleotide repeat genes associated with inherited neurological diseases. Here, we investigate the function of Spt4/5 and Elf1 in the transcription elongation of CTG•CAG repeat using an in vitro reconstituted yeast transcription system. We found that Spt4/5 helps Pol II transcribe through the CTG•CAG tract duplex DNA, which is in good agreement with its canonical roles in stimulating transcription elongation. In sharp contrast, surprisingly, we revealed that Spt4/5 greatly inhibits Pol II transcriptional bypass of CTG and CAG slip-out structures. Furthermore, we demonstrated that transcription elongation factor Elf1 individually and cooperatively with Spt4/5 inhibits Pol II bypass of the slip-out structures. This study uncovers the important functional interplays between template DNA structures and the function of transcription elongation factors. This study also expands our understanding of the functions of Spt4/5 and Elf1 in transcriptional processing of trinucleotide repeat DNA.


Sign in / Sign up

Export Citation Format

Share Document