scholarly journals Epidermal growth factor stimulates formation of inositol phosphates in BALB/c/3T3 cells pretreated with cholera toxin and isobutylmethylxanthine.

1988 ◽  
Vol 263 (3) ◽  
pp. 1111-1114
Author(s):  
N E Olashaw ◽  
W J Pledger
1980 ◽  
Vol 255 (4) ◽  
pp. 1239-1241
Author(s):  
H.T. Haigler ◽  
F.R. Maxfield ◽  
M.C. Willingham ◽  
I. Pastan

1990 ◽  
Vol 1 (9) ◽  
pp. 615-620 ◽  
Author(s):  
G F Verheijden ◽  
I Verlaan ◽  
J Schlessinger ◽  
W H Moolenaar

The possible involvement of a stimulatory guanosine triphosphate (GTP)-binding (G) protein in epidermal growth factor (EGF)-induced phosphoinositide hydrolysis has been investigated in permeabilized NIH-3T3 cells expressing the human EGF receptor. The mitogenic phospholipid lysophosphatidate (LPA), a potent inducer of phosphoinositide hydrolysis, was used as a control stimulus. In intact cells, pertussis toxin partially inhibits the LPA-induced formation of inositol phosphates, but has no effect on the response to EGF. In cells permeabilized with streptolysin-O, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) dramatically increases the initial rate of inositol phosphate formation induced by LPA. In contrast, activation of phospholipase C (PLC) by EGF occurs in a GTP-independent manner. Guanine 5'-O-(2-thiodiphosphate) (GDP beta S) which keeps G proteins in their inactive state, blocks the stimulation by LPA and GTP gamma S, but fails to affect the EGF-induced response. Tyrosine-containing substrate peptides, when added to permeabilized cells, inhibit EGF-induced phosphoinositide hydrolysis without interfering with the response to LPA and GTP gamma S. These data suggest that the EGF receptor does not utilize an intermediary G protein to activate PLC and that receptor-mediated activation of effector systems can be inhibited by exogenous substrate peptides.


1985 ◽  
Vol 229 (1) ◽  
pp. 119-125 ◽  
Author(s):  
K D Brown ◽  
D M Blakeley ◽  
P Roberts ◽  
R J Avery

Transformation of NIH/3T3 cells by Kirsten murine sarcoma virus (MSV) caused a dramatic reduction in the number of cell-surface receptors for epidermal growth factor (EGF). However, the number of EGF receptors remained at a very low level in a non-tumourigenic revertant cell line isolated from the virus-transformed cells, indicating that an increase in EGF receptors is not a requirement for the phenotypic reversion of Kirsten MSV-transformed 3T3 cells. Serum-free conditioned medium from normal and virus-transformed cell lines contained similar amounts of cell growth-promoting activity as assayed by the ability to stimulate DNA synthesis in quiescent Swiss 3T3 cell cultures. However, the concentrated conditioned medium from these cell lines showed no evidence of beta-transforming growth factor (TGF) activity as assayed by promotion of anchorage-independent growth of untransformed normal rat kidney (NRK) fibroblasts in agarose. The cellular release of alpha-TGF activity was assayed by measuring the ability of concentrated conditioned medium to inhibit the binding of 125I-EGF to Swiss 3T3 cells. Conditioned medium protein from the virus-transformed cell line inhibited 125I-EGF binding but only to the same extent as conditioned medium protein prepared from the untransformed cell line. The alpha-TGF secretion by these cell lines was estimated to be 30-45-fold lower than the level of alpha-TGF released by a well-characterized alpha-TGF-producing cell line (3B11). These results suggest that the induction of TGF release is not a necessary event in the transformation of NIH/3T3 cells by Kirsten MSV.


1992 ◽  
Vol 12 (2) ◽  
pp. 491-498 ◽  
Author(s):  
N Redemann ◽  
B Holzmann ◽  
T von Rüden ◽  
E F Wagner ◽  
J Schlessinger ◽  
...  

Overexpression and autocrine activation of the epidermal growth factor receptor (EGF-R) cause transformation of cultured cells and correlate with tumor progression in cancer patients. Dimerization and transphosphorylation are crucial events in the process by which receptors with tyrosine kinase activity generate normal and transforming cellular signals. Interruption of this process by inactive receptor mutants offers the potential to inhibit ligand-induced cellular responses. Using recombinant retroviruses, we have examined the effects of signalling-incompetent EGF-R mutants on the growth-promoting and transforming potential of ligand-activated, overexpressed wild-type EGF-R and the v-erbB oncogene product. Expression of a soluble extracellular EGF-R domain had little if any effect on the growth and transformation of NIH 3T3 cells by either tyrosine kinase. However, both a kinase-negative EGF-R point mutant (HERK721A) and an EGF-R lacking 533 C-terminal amino acids efficiently inhibited wild-type EGF-R-mediated, de novo DNA synthesis and cell transformation in a dose-dependent manner. Furthermore, coexpression with the v-erbBES4 oncogene product in NIH 3T3 cells resulted in transphosphorylation of the HERK721A mutant receptor and reduced soft-agar colony growth but had no effect in a focus formation assay. These results demonstrate that signalling-defective receptor tyrosine kinase mutants differentially interfere with oncogenic signals generated by either overexpressed EGF-R or the retroviral v-erbBES4 oncogene product.


1997 ◽  
Vol 21 (4) ◽  
pp. 185-191 ◽  
Author(s):  
Devendra I. Mehta ◽  
Karoly Horváth ◽  
Somchoke Chanasongcram ◽  
Ivor D. Hill ◽  
Pinaki Panigrahi

Sign in / Sign up

Export Citation Format

Share Document