A single-degree-of-freedom dynamic model predicts the range of human responses to impulsive forces produced by power hand tools

2003 ◽  
Vol 36 (12) ◽  
pp. 1845-1852 ◽  
Author(s):  
Jia-Hua Lin ◽  
Robert G. Radwin ◽  
Terry G. Richard
2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Raffaele Di Gregorio

Many even complex machines employ single degree-of-freedom (single-dof) planar mechanisms. The instantaneous kinematics of planar mechanisms can be fully understood by analyzing where the instant centers (ICs) of the relative motions among mechanism’s links are located. ICs' positions depend only on the mechanism configuration in single-dof planar mechanisms and a number of algorithms that compute their location have been proposed in the literature. Once ICs positions are known, they can be exploited, for instance, to determine the velocity coefficients (VCs) of the mechanism and the virtual work of the external forces applied to mechanism's links. Here, these and other ICs' properties are used to build a novel dynamic model and an algorithm that solves the dynamic problems of single-dof planar mechanisms. Then, the proposed model and algorithm are applied to a case study.


2021 ◽  
Vol 159 ◽  
pp. 104258
Author(s):  
Jeonghwan Lee ◽  
Lailu Li ◽  
Sung Yul Shin ◽  
Ashish D. Deshpande ◽  
James Sulzer

1986 ◽  
Vol 108 (4) ◽  
pp. 394-400
Author(s):  
Z. N. Ibrahim

The inertia concept of modal mass was developed to provide a consistent methodology for establishing an analytically equivalent dynamic model of any discrete section within a complex piping network. The multidegree of freedom system is reduced to several multiple excitation single degree of freedom (SDOF) systems representing its modal masses and modal stiffnesses. The multiple excitation residual mass and residual stiffness matrices were also formulated. The combination of modal mass-modal stiffness SDOF systems and residual mass-residual stiffness matrices can simulate the complete dynamic characteristic of any desired portion of the piping network. This technique was extended to cover substructuring applications, and was proved mathematically to be equivalent to the conventional modal synthesis formulation.


Sign in / Sign up

Export Citation Format

Share Document