The likelihood of myofascial force transmission between synergistic and antagonistic muscles in vivo

2006 ◽  
Vol 39 ◽  
pp. S65 ◽  
Author(s):  
P.A. Huijing
2003 ◽  
Vol 03 (02) ◽  
pp. 145-168 ◽  
Author(s):  
Huub Maas ◽  
Can A. Yucesoy ◽  
Guus C. Baan ◽  
Peter A. Huijing

Force is transmitted from muscle fiber to bone via several pathways: (1) via the tendons (i.e. myotendinous force transmission), (2) via intermuscular connective tissue to adjacent muscles (i.e. intermuscular myofascial force transmission), (3) via structures other than muscles (i.e. extramuscular myofascial force transmission). In vivo, the position of a muscle relative to adjacent muscles changes due to differences in moment arm between synergists as well as due to the fact that some muscles span only one joint and other muscles more than one joint. The position of a muscle relative to non-muscular structures within a compartment is altered with each change of the length of the muscle. The aim of this article is to describe recent experimental results, as well as some new experimental data, that have elucidated the role of muscle relative position on force transmission from muscle. Furthermore, relevant literature is discussed, taking into consideration these new insights of muscle functioning. It is concluded that the position of a muscle relative to surrounding tissues is a major co-determinant of isometric muscle force. For muscles operating within their in vivo context of connective tissue, such position effects should be taken into account.


2009 ◽  
Vol 107 (5) ◽  
pp. 1453-1462 ◽  
Author(s):  
Huub Maas ◽  
Peter A. Huijing

The goals of the present study were 1) to assess effects of antagonist coactivation on mechanical interactions between synergistic muscles, and 2) to quantify the extent of epimuscular myofascial force transmission between synergistic and antagonistic muscles in the rat forelimb. Connective tissues enveloping the muscle bellies in the antebrachium were left intact. Forces exerted at the distal tendons of flexor carpi ulnaris (FCU), palmaris longus (PL), and extensor carpi ulnaris (ECU) muscles were measured at various FCU lengths for two different stimulation protocols: 1) simultaneous stimulation of ulnar/median nerve complex (exciting all wrist flexors, including synergistic FCU and PL) and radial nerve (exciting all wrist extensors, including antagonistic ECU); and 2) stimulation of the ulnar/median nerve exclusively. PL and ECU were kept at a constant length. In addition, muscle forces were measured during stimulation of one of the indicated nerves, with later addition of stimulation of the second nerve during the maintained tetanic contraction. Coactivation of antagonistic muscles increased FCU isometric forces (on average, by 10% of optimal force) and PL forces (on average, by 13% of maximal force), but mechanical interaction between FCU and PL was unchanged. Changing the length and relative position of FCU significantly affected PL (by 20%) as well as ECU forces (by 8%). In addition, distal tetanic force of FCU kept at a constant high length was determined by the order of nerve stimulation onset. These results indicate effects of myofascial pathways between synergistic and antagonistic muscles in the rat forelimb. Coactivation may enhance the stiffness of connective tissues between muscles, but the present data suggest that activation of all wrist flexors already preloaded the myofascial pathways to the greatest extent. The stimulation order effects were explained by dynamic features of muscle and connective tissues (i.e., length-history dependence and viscoelasticity).


2017 ◽  
Vol 63 ◽  
pp. 55-60 ◽  
Author(s):  
Hellen Veloso Rocha Marinho ◽  
Giovanna Mendes Amaral ◽  
Bruno Souza Moreira ◽  
Thiago Ribeiro Teles Santos ◽  
Fabrício Anicio Magalhães ◽  
...  

2018 ◽  
Vol 124 (1) ◽  
pp. 234-244 ◽  
Author(s):  
Jan Wilke ◽  
Robert Schleip ◽  
Can A. Yucesoy ◽  
Winfried Banzer

Recent research indicates that fascia is capable of changing its biomechanical properties. Moreover, as it links the skeletal muscles, forming a body-wide network of multidirectional myofascial continuity, the classical conception of muscles as independent actuators has been challenged. Hence, the present synthesis review aims to characterize the mechanical relevance of the connective tissue for the locomotor system. Results of cadaveric and animal studies suggest a clinically relevant myofascial force transmission to neighboring structures within one limb (e.g., between synergists) and in the course of muscle-fascia chains (e.g., between leg and trunk). Initial in vivo trials appear to underpin these findings, demonstrating the existence of nonlocal exercise effects. However, the factors influencing the amount of transmitted force (e.g., age and physical activity) remain controversial, as well as the role of the central nervous system within the context of the observed remote exercise effects.


Author(s):  
M.S. Ajimsha ◽  
Praveen Surendran ◽  
Prasobh Jacob ◽  
Pramod Shenoy ◽  
Mohammed Bilal

Background: The fascial system provides an environment that enables all body systems to operate in an integrated manner and is capable of modifying its tensional state in response to the stress applied to it. Recent in vitro, animal and cadaveric studies have shown that “myofascial force transfer” (MFT) has the potential to play a major role in musculoskeletal function and dysfunction.Objective: Human evidence for the existence of invivo MFT is scarce. This scoping review attempts to gather and analyse the available evidence of the in-vivo human MFT studies in order to sustain and facilitate further research and evidence based practice in this field.Methods: A search of most major databases was conducted with relevant keywords that yielded 238 articles as of August 2020. A qualitative analysis of the studies was conducted after rating it with Oxford’s Center for Evidence –based Medicine (CEBM) scale.Result: Nineteen studies ranging from randomized controlled trials to case studies covering 540 patients were included in this review. The analysed studies were highly heterogeneous and of lower methodological quality meddling with the quantitative analysis. Ten studies are confirming a ‘most likely’ existence of MFT, eight studies confirming it as ‘likely’ and one study couldn’t confirm any MFT existence in this review.Conclusion: Findings from in vivo human studies supports the animal and cadaveric studies claiming the existence of MFT which need to be corroborated by the future high quality studies. Forthcoming studies on MFT may give answers and solutions to many of the human musculoskeletal mysteries or dysfunctions.


2019 ◽  
Vol 83 ◽  
pp. 91-96 ◽  
Author(s):  
Sandro R. Freitas ◽  
André Antunes ◽  
Pierre Salmon ◽  
Bruno Mendes ◽  
Telmo Firmino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document