Implications of Muscle Relative Position as a Co-Determinant of Isometric Muscle Force

2003 ◽  
Vol 03 (02) ◽  
pp. 145-168 ◽  
Author(s):  
Huub Maas ◽  
Can A. Yucesoy ◽  
Guus C. Baan ◽  
Peter A. Huijing

Force is transmitted from muscle fiber to bone via several pathways: (1) via the tendons (i.e. myotendinous force transmission), (2) via intermuscular connective tissue to adjacent muscles (i.e. intermuscular myofascial force transmission), (3) via structures other than muscles (i.e. extramuscular myofascial force transmission). In vivo, the position of a muscle relative to adjacent muscles changes due to differences in moment arm between synergists as well as due to the fact that some muscles span only one joint and other muscles more than one joint. The position of a muscle relative to non-muscular structures within a compartment is altered with each change of the length of the muscle. The aim of this article is to describe recent experimental results, as well as some new experimental data, that have elucidated the role of muscle relative position on force transmission from muscle. Furthermore, relevant literature is discussed, taking into consideration these new insights of muscle functioning. It is concluded that the position of a muscle relative to surrounding tissues is a major co-determinant of isometric muscle force. For muscles operating within their in vivo context of connective tissue, such position effects should be taken into account.

2003 ◽  
Vol 94 (3) ◽  
pp. 1092-1107 ◽  
Author(s):  
Peter A. Huijing ◽  
Guus C. Baan

Equal proximal and distal lengthening of rat extensor digitorum longus (EDL) were studied. Tibialis anterior, extensor hallucis longus, and EDL were active maximally. The connective tissues around these muscle bellies were left intact. Proximal EDL forces differed from distal forces, indicating myofascial force transmission to structures other than the tendons. Higher EDL distal force was exerted (ratio ≈118%) after distal than after equal proximal lengthening. For proximal force, the reverse occurred (ratio ≈157%). Passive EDL force exerted at the lengthened end was 7–10 times the force exerted at the nonlengthened end. While kept at constant length, synergists (tibialis anterior + extensor hallucis longus: active muscle force difference ≈ −10%) significantly decreased in force by distal EDL lengthening, but not by proximal EDL lengthening. We conclude that force exerted at the tendon at the lengthened end of a muscle is higher because of the extra load imposed by myofascial force transmission on parts of the muscle belly. This is mediated by changes of the relative position of most parts of the lengthened muscle with respect to neighboring muscles and to compartment connective tissues. As a consequence, muscle relative position is a major codeterminant of muscle force for muscle with connectivity of its belly close to in vivo conditions.


2002 ◽  
Vol 02 (03n04) ◽  
pp. 405-419 ◽  
Author(s):  
PETER A. HUIJING

The concepts of intramuscular myofascial force transmission is reintroduced and reviewed on the basis of experiments involving tenotomy and aponeurotomy of dissected rat EDL muscle studied in situ. Results from experiments with measurements of force of EDL muscle, of which the muscle belly was not dissected (i.e. the muscle is surrounded by its natural connective tissue milieu) are discussed. In such experiments, force was measured at proximal as well as distal EDL tendons. Examples of experimental evidence for both extramuscular and intermuscular myofascial force transmission within the rat anterior crural compartment are presented. Evidence is presented also for differential effects of proximal and distal lengthening on myofascial force transmission from EDL, even for the case in which symmetric length changes were imposed on the muscle. It is shown that myofascial force transmission effects are not limited to synergists located within one compartment, but do also play a very substantial role in the interaction between antagonist muscles in neighbouring anterior crural and peroneal compartments.


1983 ◽  
Vol 55 (3) ◽  
pp. 759-769 ◽  
Author(s):  
S. J. Gunst

Strips of tonically contracted canine tracheal and bronchial airway smooth muscles (AWSM) were studied in vitro to compare dynamic muscle force during stretch-retraction cycles with static isometric muscle force at various length points within the cycling range. At any particular rate, a characteristic force-length loop was obtained by cycling over a given range of lengths. Dynamic muscle force dropped well below static isometric muscle force at lengths short of the peak length at all rates of cycling. When stretch or retraction of the muscle was stopped at any point along either path of the cycle, muscle force rose to approach the isometric force at that length. Dynamic force at the peak length of the cycle remained close to, or slightly greater than, the static isometric force. The results suggest that the velocity of shortening of tonically contracted AWSM is very slow relative to the rates of cycling employed. A slow rate of shortening of AWSM relative to the rate of change in airway caliber during breathing could account for well-known effects of volume history on airway tone.


sportlogia ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 81-89
Author(s):  
Borko Petrović ◽  
◽  
Aleksandar Kukrić ◽  
Radenko Dobraš ◽  
Nemanja Zlojutro ◽  
...  

2019 ◽  
Vol 28 (4) ◽  
pp. 325-331 ◽  
Author(s):  
Genki Hatano ◽  
Shigeyuki Suzuki ◽  
Shingo Matsuo ◽  
Satoshi Kataura ◽  
Kazuaki Yokoi ◽  
...  

Context: Hamstring injuries are common, and lack of hamstring flexibility may predispose to injury. Static stretching not only increases range of motion (ROM) but also results in reduced muscle strength after stretching. The effects of stretching on the hamstring muscles and the duration of these effects remain unclear. Objective: To determine the effects of static stretching on the hamstrings and the duration of these effects. Design: Randomized crossover study. Setting: University laboratory. Participants: A total of 24 healthy volunteers. Interventions: The torque–angle relationship (ROM, passive torque [PT] at the onset of pain, and passive stiffness) and isometric muscle force using an isokinetic dynamometer were measured. After a 60-minute rest, the ROM of the dynamometer was set at the maximum tolerable intensity; this position was maintained for 300 seconds, while static PT was measured continuously. The torque–angle relationship and isometric muscle force after rest periods of 10, 20, and 30 minutes were remeasured. Main Outcome Measures: Change in static PT during stretching and changes in ROM, PT at the onset of pain, passive stiffness, and isometric muscle force before stretching were compared with 10, 20, and 30 minutes after stretching. Results: Static PT decreased significantly during stretching. Passive stiffness decreased significantly 10 and 20 minutes after stretching, but there was no significant prestretching versus poststretching difference after 30 minutes. PT at the onset of pain and ROM increased significantly after stretching at all rest intervals, while isometric muscle force decreased significantly after all rest intervals. Conclusions: The effect of static stretching on passive stiffness of the hamstrings was not maintained as long as the changes in ROM, stretch tolerance, and isometric muscle force. Therefore, frequent stretching is necessary to improve the viscoelasticity of the muscle–tendon unit. Muscle force decreased for 30 minutes after stretching; this should be considered prior to activities requiring maximal muscle strength.


1990 ◽  
Vol 22 (2) ◽  
pp. S8
Author(s):  
M. G. Bemben ◽  
B. H. Massey ◽  
R. A. Boileau ◽  
J. E. Misner ◽  
P. J. Bechtel ◽  
...  

2018 ◽  
Vol 72 (1) ◽  
pp. 57-70 ◽  
Author(s):  
Stefan Marković ◽  
Milivoj Dopsaj ◽  
Stevan Jovanović ◽  
Tijana Rusovac ◽  
Nataša Cvetkovski

2019 ◽  
Vol 126 (5) ◽  
pp. 1465-1473 ◽  
Author(s):  
Huub Maas

In the past 20 yr, force transmission via connective tissue linkages at the muscle belly surface, called epimuscular myofascial force transmission, has been studied extensively. In this article, the effects of epimuscular linkages under passive muscle conditions are reviewed. Several animal studies that included direct (invasive) measurements of force transmission have shown that different connective tissue structures serve as an epimuscular pathway and that these tissues have sufficient stiffness, especially at supraphysiological muscle lengths and relative positions, to transmit substantial passive forces (up to 15% of active optimal force). Exact values of lumped tissue stiffness for different connective tissue structures have not yet been estimated. Experiments using various imaging techniques (ultrasound, MRI, shear wave elastography) have yielded some, but weak, evidence of epimuscular myofascial force transmission for passive muscles in humans. At this point, the functional consequences of epimuscular pathways for muscle and joint mechanics in the intact body are still unknown. Potentially, however, these pathways may affect sensory feedback and, thereby, neuromuscular control. In addition, altered epimuscular force transmission in pathological conditions may also contribute to changes in passive range of joint motion.


Sign in / Sign up

Export Citation Format

Share Document