Lung tissue mechanics: from extracellular matrix to alveolar network behavior

2006 ◽  
Vol 39 ◽  
pp. S267
Author(s):  
B. Suki ◽  
H. Parameswaran ◽  
A. Majumdar
2008 ◽  
Vol 294 (6) ◽  
pp. L1197-L1205 ◽  
Author(s):  
Patrícia Angeli ◽  
Carla M. Prado ◽  
Débora G. Xisto ◽  
Pedro L. Silva ◽  
Caroline P. Pássaro ◽  
...  

The importance of lung tissue in asthma pathophysiology has been recently recognized. Although nitric oxide mediates smooth muscle tonus control in airways, its effects on lung tissue responsiveness have not been investigated previously. We hypothesized that chronic nitric oxide synthase (NOS) inhibition by Nω-nitro-l-arginine methyl ester (l-NAME) may modulate lung tissue mechanics and eosinophil and extracellular matrix remodeling in guinea pigs with chronic pulmonary inflammation. Animals were submitted to seven saline or ovalbumin exposures with increasing doses (1∼5 mg/ml for 4 wk) and treated or not with l-NAME in drinking water. After the seventh inhalation (72 h), animals were anesthetized and exsanguinated, and oscillatory mechanics of lung tissue strips were performed in baseline condition and after ovalbumin challenge (0.1%). Using morphometry, we assessed the density of eosinophils, neuronal NOS (nNOS)- and inducible NOS (iNOS)-positive distal lung cells, smooth muscle cells, as well as collagen and elastic fibers in lung tissue. Ovalbumin-exposed animals had an increase in baseline and maximal tissue resistance and elastance, eosinophil density, nNOS- and iNOS-positive cells, the amount of collagen and elastic fibers, and isoprostane-8-PGF2α expression in the alveolar septa compared with controls ( P < 0.05). l-NAME treatment in ovalbumin-exposed animals attenuated lung tissue mechanical responses ( P < 0.01), nNOS- and iNOS-positive cells, elastic fiber content ( P < 0.001), and isoprostane-8-PGF2α in the alveolar septa ( P < 0.001). However, this treatment did not affect the total number of eosinophils and collagen deposition. These data suggest that NO contributes to distal lung parenchyma constriction and to elastic fiber deposition in this model. One possibility may be related to the effects of NO activating the oxidative stress pathway.


2001 ◽  
Vol 164 (6) ◽  
pp. 1067-1071 ◽  
Author(s):  
PATRICIA R. M. ROCCO ◽  
ELNARA M. NEGRI ◽  
PEDRO M. KURTZ ◽  
FERNANDA P. VASCONCELLOS ◽  
GABRIELA H. SILVA ◽  
...  

2001 ◽  
Vol 281 (5) ◽  
pp. L1078-L1087 ◽  
Author(s):  
Rehab Al-Jamal ◽  
Mara S. Ludwig

Excessive mechanical ventilation results in changes in lung tissue mechanics. We hypothesized that changes in tissue properties might be related to changes in the extracellular matrix component proteoglycans (PGs). The effect of different ventilation regimens on lung tissue mechanics and PGs was examined in an in vivo rat model. Animals were anesthetized, tracheostomized, and ventilated at a tidal volume of 8 (Vt 8), 20, or 30 (Vt 30) ml/kg, positive end-expiratory pressure of 0 (PEEP0) or 1.5 (PEEP1.5) cmH2O, and frequency of 1.5 Hz for 2 h. The constant-phase model was used to derive airway resistance, tissue elastance, and tissue damping. After physiological measurements, one lung was frozen for immunohistochemistry and the other was reserved for PG extraction and Western blotting. After 2 h of mechanical ventilation, tissue elastance and damping were significantly increased in rats ventilated at Vt 30PEEP0 compared with control rats (ventilated at Vt 8PEEP1.5). Versican, basement membrane heparan sulfate PG, and biglycan were all increased in rat lungs ventilated at Vt 30PEEP0 compared with control rats. At Vt 30PEEP0, heparan sulfate PG and versican staining became prominent in the alveolar wall and airspace; biglycan was mostly localized in the airway wall. These data demonstrate that alterations in lung tissue mechanics with excessive mechanical ventilation are accompanied by changes in all classes of extracellular matrix PG.


2009 ◽  
Vol 165 (2-3) ◽  
pp. 202-207 ◽  
Author(s):  
Mariana A. Antunes ◽  
Soraia C. Abreu ◽  
Nilsa R. Damaceno-Rodrigues ◽  
Edwin R. Parra ◽  
Vera L. Capelozzi ◽  
...  

2016 ◽  
Vol 310 (4) ◽  
pp. L311-L327 ◽  
Author(s):  
Aline Vuckovic ◽  
Susanne Herber-Jonat ◽  
Andreas W. Flemmer ◽  
Ina M. Ruehl ◽  
Carmela Votino ◽  
...  

Survivors of severe congenital diaphragmatic hernia (CDH) present significant respiratory morbidity despite lung growth induced by fetal tracheal occlusion (TO). We hypothesized that the underlying mechanisms would involve changes in lung extracellular matrix and dysregulated transforming growth factor (TGF)-β pathway, a key player in lung development and repair. Pulmonary expression of TGF-β signaling components, downstream effectors, and extracellular matrix targets were evaluated in CDH neonates who died between birth and the first few weeks of life after prenatal conservative management or TO, and in rabbit pups that were prenatally randomized for surgical CDH and TO vs. sham operation. Before tissue harvesting, lung tissue mechanics in rabbits was measured using the constant-phase model during the first 30 min of life. Human CDH and control fetal lungs were also collected from midterm onwards. Human and experimental CDH did not affect TGF-β/Smad2/3 expression and activity. In human and rabbit CDH lungs, TO upregulated TGF-β transcripts. Analysis of downstream pathways indicated increased Rho-associated kinases to the detriment of Smad2/3 activation. After TO, subtle accumulation of collagen and α-smooth muscle actin within alveolar walls was detected in rabbit pups and human CDH lungs with short-term mechanical ventilation. Despite TO-induced lung growth, mediocre lung tissue mechanics in the rabbit model was associated with increased transcription of extracellular matrix components. These results suggest that prenatal TO increases TGF-β/Rho kinase pathway, myofibroblast differentiation, and matrix deposition in neonatal rabbit and human CDH lungs. Whether this might influence postnatal development of sustainably ventilated lungs remains to be determined.


2006 ◽  
Vol 152 (2) ◽  
pp. 186-196 ◽  
Author(s):  
Debora S. Faffe ◽  
Elizabeth S. D’Alessandro ◽  
Debora G. Xisto ◽  
Mariana A. Antunes ◽  
Pablo V. Romero ◽  
...  

2001 ◽  
Vol 90 (4) ◽  
pp. 1400-1406 ◽  
Author(s):  
Débora S. Faffe ◽  
Gabriela H. Silva ◽  
Pedro M. P. Kurtz ◽  
Elnara M. Negri ◽  
Vera L. Capelozzi ◽  
...  

The dynamic mechanical properties of lung tissue and its contents of collagen and elastic fibers were studied in strips prepared from mice instilled intratracheally with saline (C) or silica [15 (S15) and 30 days (S30) after instillation]. Resistance, elastance, and hysteresivity were studied during oscillations at different frequencies on S15 and S30. Elastance increased from C to silica groups but was similar between S15 and S30. Resistance was augmented from C to S15 and S30 and was greater in S30 than in S15 at higher frequencies. Hysteresivity was higher in S30 than in C and S15. Silica groups presented a greater amount of collagen than did C. Elastic fiber content increased progressively along time. This increment was related to the higher amount of oxytalan fibers at 15 and 30 days, whereas elaunin and fully developed elastic fibers were augmented only at 30 days. Silicosis led not only to pulmonary fibrosis but also to fibroelastosis, thus assigning a major role to the elastic system in the silicotic lung.


2008 ◽  
Vol 104 (6) ◽  
pp. 1778-1785 ◽  
Author(s):  
Adriane S. Nakashima ◽  
Carla M. Prado ◽  
Tatiana Lanças ◽  
Viviane C. Ruiz ◽  
David I. Kasahara ◽  
...  

Recent studies emphasize the presence of alveolar tissue inflammation in asthma. Immunotherapy has been considered a possible therapeutic strategy for asthma, and its effect on lung tissue had not been previously investigated. Measurements of lung tissue resistance and elastance were obtained before and after both ovalbumin and acetylcholine challenges. Using morphometry, we assessed eosinophil and smooth muscle cell density, as well as collagen and elastic fiber content, in lung tissue from guinea pigs with chronic pulmonary allergic inflammation. Animals received seven inhalations of ovalbumin (1–5 mg/ml; OVA group) or saline (SAL group) during 4 wk. Oral tolerance (OT) was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st inhalation (OT1 group) or after the 4th (OT2 group). The ovalbumin-exposed animals presented an increase in baseline and in postchallenge resistance and elastance related to baseline, eosinophil density, and collagen and elastic fiber content in lung tissue compared with controls. Baseline and post-ovalbumin and acetylcholine elastance and resistance, eosinophil density, and collagen and elastic fiber content were attenuated in OT1 and OT2 groups compared with the OVA group. Our results show that inducing oral tolerance attenuates lung tissue mechanics, as well as eosinophilic inflammation and extracellular matrix remodeling induced by chronic inflammation.


2021 ◽  
Author(s):  
Young Hye Song ◽  
Mark Maynes ◽  
Nora Hlavac ◽  
Daniel Visosevic ◽  
Kaitlyn Daramola ◽  
...  

Decellularized tissues hold great potential for both regenerative medicine and disease modeling applications. The acellular extracellular matrix (ECM)-enriched scaffolds can be recellularized with patient-derived cells prior to transplantation, or digested...


Sign in / Sign up

Export Citation Format

Share Document