Lung Tissue Mechanics and Extracellular Matrix Remodeling in Acute Lung Injury

2001 ◽  
Vol 164 (6) ◽  
pp. 1067-1071 ◽  
Author(s):  
PATRICIA R. M. ROCCO ◽  
ELNARA M. NEGRI ◽  
PEDRO M. KURTZ ◽  
FERNANDA P. VASCONCELLOS ◽  
GABRIELA H. SILVA ◽  
...  
2008 ◽  
Vol 104 (6) ◽  
pp. 1778-1785 ◽  
Author(s):  
Adriane S. Nakashima ◽  
Carla M. Prado ◽  
Tatiana Lanças ◽  
Viviane C. Ruiz ◽  
David I. Kasahara ◽  
...  

Recent studies emphasize the presence of alveolar tissue inflammation in asthma. Immunotherapy has been considered a possible therapeutic strategy for asthma, and its effect on lung tissue had not been previously investigated. Measurements of lung tissue resistance and elastance were obtained before and after both ovalbumin and acetylcholine challenges. Using morphometry, we assessed eosinophil and smooth muscle cell density, as well as collagen and elastic fiber content, in lung tissue from guinea pigs with chronic pulmonary allergic inflammation. Animals received seven inhalations of ovalbumin (1–5 mg/ml; OVA group) or saline (SAL group) during 4 wk. Oral tolerance (OT) was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st inhalation (OT1 group) or after the 4th (OT2 group). The ovalbumin-exposed animals presented an increase in baseline and in postchallenge resistance and elastance related to baseline, eosinophil density, and collagen and elastic fiber content in lung tissue compared with controls. Baseline and post-ovalbumin and acetylcholine elastance and resistance, eosinophil density, and collagen and elastic fiber content were attenuated in OT1 and OT2 groups compared with the OVA group. Our results show that inducing oral tolerance attenuates lung tissue mechanics, as well as eosinophilic inflammation and extracellular matrix remodeling induced by chronic inflammation.


2020 ◽  
pp. 100056
Author(s):  
Riley T. Hannan ◽  
Andrew E. Miller ◽  
Ruei-Chun Hung ◽  
Catherine Sano ◽  
Shayn M. Peirce ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1046
Author(s):  
Jorge Martinez ◽  
Patricio C. Smith

Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as “desmoplastic reaction”. This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.


2006 ◽  
Vol 95 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Eric A. Andreasen ◽  
Lijoy K. Mathew ◽  
Christiane V. Löhr ◽  
Rachelle Hasson ◽  
Robert L. Tanguay

2004 ◽  
Vol 191 (6) ◽  
pp. S10
Author(s):  
Wendy Kinzler ◽  
John Smulian ◽  
C. Andrew Kistler ◽  
Rita Hahn ◽  
Peihong Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document