Mechanical response of fingertip and nail to compressive force

2006 ◽  
Vol 39 ◽  
pp. S638
Author(s):  
N. Sakai ◽  
S. Shimawaki
SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 531-546 ◽  
Author(s):  
Jun Yoneda ◽  
Akira Takiguchi ◽  
Toshimasa Ishibashi ◽  
Aya Yasui ◽  
Jiro Mori ◽  
...  

Summary During gas production from offshore gas-HBS, there are concerns regarding the settlement of the seabed and the possibility that frictional stress will develop along the production casing. This frictional stress is caused by a change in the effective stress induced by water movement caused by depressurization and dissociation of hydrate as well as gas generation and thermal changes, all of which are interconnected. The authors have developed a multiphase-coupled simulator by use of a finite-element method named COTHMA. Stresses and deformation caused by gas-hydrate production near the production well and deep seabed were predicted using a multiphase simulator coupled with geomechanics for the offshore gas-hydrate-production test in the eastern Nankai Trough. Distributions of hydrate saturation, gas saturation, water pressure, gas pressure, temperature, and stresses were predicted by the simulator. As a result, the dissociation of gas hydrate was predicted within a range of approximately 10 m, but mechanical deformation occurred in a much wider area. The stress localization initially occurred in a sand layer with low hydrate saturation, and compression behavior appeared. Tensile stress was generated in and around the casing shoe as it was pulled vertically downward caused by compaction of the formation. As a result, the possibility of extensive failure of the gravel pack of the well completion was demonstrated. In addition, in a specific layer, where a pressure reduction progressed in the production interval, the compressive force related to frictional stress from the formation increased, and the gravel layer became thin. Settlement of the seafloor caused by depressurization for 6 days was within a few centimeters and an approximate 30 cm for 1 year of continued production.


Author(s):  
Bradley Drahos ◽  
Amer Safdari ◽  
Faizan Malik ◽  
Rebecca Smith ◽  
Matt Kubala ◽  
...  

Abstract With medical institutions increasing the use of medical simulators for educational purposes it is detrimental that the knowledge gap regarding tissue mechanical properties be researched further in depth. The grasper device discussed throughout this paper aims to provide researchers a handheld device capable of testing soft organs and tissue in-vivo and ex-situ in a laboratory setting. The device consists of two load cells on the inner jaws of the grasper to measure compressive force and an encoder to monitor the graspers angular position which yields tissue position and strain. Accompanying the grasper is a GUI written in Rust which is capable of data file management, and providing a 10 second live feed of load cell and encoder readings. The grasper device is currently being employed in a study testing the tissue mechanical response of porcine tissue at states ranging from in-vivo to ex-situ post freeze. The results from this test, and subsequent tests using the grasper have the capability of providing much needed knowledge regarding tissue mechanical properties to improve medical simulators and medical education as a whole.


Author(s):  
Brett Steineman ◽  
Robert LaPrade ◽  
Tammy Haut Donahue

Abstract Meniscal root repairs are susceptible to unrecoverable loosening that may displace the meniscus from the initial position reduced during surgery. Despite this, the effects of a loosened meniscal root repair on knee mechanics are unknown. We hypothesized that anatomic root repairs without loosening would restore knee mechanics to the intact condition better than loosened anatomic root repairs, but that loosened repairs would restore mechanics better than untreated meniscal root tears. Finite element knee models were used to evaluate changes in cartilage and meniscus mechanics due to repair loosening. The mechanical response from loosened anatomic root repairs was compared to anatomic repairs without loosening and untreated root tears. All conditions were evaluated at three flexion angles, 0°, 30°, and 60°, and a compressive force of 1,000 N to simulate return-to-activity loading. The two-simple-suture method was represented within the models to simulate posteromedial meniscal root repairs and repair loosening was derived from previous biomechanical experimental data. Loosening decreased hoop stresses throughout the meniscus, increased posterior extrusion, and shifted loading through the meniscus-cartilage region to the cartilage-cartilage region compared to the anatomic root repair without loosening. Despite differences between repairs and loosened repairs, the changes from loosened repairs more closely resembled the anatomic repair without loosening than the untreated root repair condition. Therefore, root repairs are susceptible to loosening that will prevent a successful initial repair from remaining in the intended position and will alter mechanics, although repairs that loosen appear better than leaving tears untreated.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Terry P. Bigioni ◽  
Brett A. Cruden

A popular technique for characterizing the mechanical properties of carbon nanotubes is to apply a one-dimension axial compression and measure its response to the compressive force. At some critical compression, a dramatic decrease in the force is observed. This has previously been attributed to Euler buckling, allowing the elastic modulus to be calculated from the Euler buckling force. We have attached individual plasma enhanced chemical vapor deposition (PECVD) grown carbon nanofibers (CNFs) and thermal chemical vapor deposition (CVD) grown carbon nanotubes (CNTs) to the apex of an atomic force microscope (AFM) cantilever to examine this mechanical response. By combining the force measurements and simultaneous video microscopy, we are able to observe the mechanical deformation and correlate points in the force curve with phenomena such as slipping and bending. Analysis of the mechanical response must therefore be interpreted in terms of bending and/or slipping of a tube compressed by an off-normal force.


Author(s):  
D. L. Rohr ◽  
S. S. Hecker

As part of a comprehensive study of microstructural and mechanical response of metals to uniaxial and biaxial deformations, the development of substructure in 1100 A1 has been studied over a range of plastic strain for two stress states.Specimens of 1100 aluminum annealed at 350 C were tested in uniaxial (UT) and balanced biaxial tension (BBT) at room temperature to different strain levels. The biaxial specimens were produced by the in-plane punch stretching technique. Areas of known strain levels were prepared for TEM by lapping followed by jet electropolishing. All specimens were examined in a JEOL 200B run at 150 and 200 kV within 24 to 36 hours after testing.The development of the substructure with deformation is shown in Fig. 1 for both stress states. Initial deformation produces dislocation tangles, which form cell walls by 10% uniaxial deformation, and start to recover to form subgrains by 25%. The results of several hundred measurements of cell/subgrain sizes by a linear intercept technique are presented in Table I.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


Sign in / Sign up

Export Citation Format

Share Document