afm cantilever
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 1)

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1332
Author(s):  
Mateusz Ficek ◽  
Maciej J. Głowacki ◽  
Krzysztof Gajewski ◽  
Piotr Kunicki ◽  
Ewelina Gacka ◽  
...  

In this paper, a novel fabrication technology of atomic force microscopy (AFM) probes integrating cantilever tips with an NV-rich diamond particle is presented. Nanomanipulation techniques combined with the focused electron beam-induced deposition (FEBID) procedure were applied to position the NV-rich diamond particle on an AFM cantilever tip. Ultrasonic treatment of nanodiamond suspension was applied to reduce the size of diamond particles for proper geometry and symmetry. The fabricated AFM probes were tested utilizing measurements of the electrical resistance at highly oriented pyrolytic graphite (HOPG) and compared with a standard AFM cantilever performance. The results showed novel perspectives arising from combining the functionalities of a scanning AFM with optically detected magnetic resonance (ODMR). In particular, it offers enhanced magnetometric sensitivity and the nanometric resolution.


2021 ◽  
Vol 7 ◽  
Author(s):  
Manuel Reichelt ◽  
Brunero Cappella

Single asperity nanowear phenomena are fundamental for understanding basic tribological mechanisms. Yet, they are studied mostly through theoretical and simulation works. Few experiments were conducted in the past decades, usually with materials which are commonly used in micro- and nanotechnology, but not for macroscopic components with relevance in tribology. In the present work, we show for the first time tribotests performed with self-mated 100Cr6 steel, a very widespread material at the macroscale, taking advantage of an AFM, employed as a tribometer for the tribotests as well as for the inspection of wear of both tribopartners. Emphasis is put on the morphology of the scars, on wear particles, and on wear of the “colloidal” particles glued on the AFM cantilever. Measurements demonstrate the possibility of characterizing single asperity events leading to very small wear (scars with isolated, down to 1-nm-deep scratches). We highlight several phenomena, for example, transfer of wear particles and their negative contribution to wear volume, which are elementary key constituents of tribological processes. Such phenomena, probably occurring also at the macroscale, can be detected, identified, and characterized with high spatial and time resolution only at the nanoscale, thus giving insight into conditions and causes of their emergence.


2021 ◽  
Vol 11 (15) ◽  
pp. 6813
Author(s):  
Babak Eslami ◽  
Dylan Caputo

Atomic Force Microscopy (AFM) is no longer used as a nanotechnology tool responsible for topography imaging. However, it is widely used in different fields to measure various types of material properties, such as mechanical, electrical, magnetic, or chemical properties. One of the recently developed characterization techniques is known as loss tangent. In loss tangent AFM, the AFM cantilever is excited, similar to amplitude modulation AFM (also known as tapping mode); however, the observable aspects are used to extract dissipative and conservative energies per cycle of oscillation. The ratio of dissipation to stored energy is defined as tanδ. This value can provide useful information about the sample under study, such as how viscoelastic or elastic the material is. One of the main advantages of the technique is the fact that it can be carried out by any AFM equipped with basic dynamic AFM characterization. However, this technique lacks some important experimental guidelines. Although there have been many studies in the past years on the effect of oscillation amplitude, tip radius, or environmental factors during the loss tangent measurements, there is still a need to investigate the effect of excitation frequency during measurements. In this paper, we studied four different sets of samples, performing loss tangent measurements with both first and second eigenmode frequencies. It is found that performing these measurements with higher eigenmode is advantageous, minimizing the tip penetration through the surface and therefore minimizing the error in loss tangent measurements due to humidity or artificial dissipations that are not dependent on the actual sample surface.


2021 ◽  
Vol 9 (8) ◽  
pp. 1545
Author(s):  
Maria I. Villalba ◽  
Leonardo Venturelli ◽  
Ronnie Willaert ◽  
Maria E. Vela ◽  
Osvaldo Yantorno ◽  
...  

Atomic force microscopy (AFM)-based nanomotion detection is a label-free technique that has been used to monitor the response of microorganisms to antibiotics in a time frame of minutes. The method consists of attaching living organisms onto an AFM cantilever and in monitoring its nanometric scale oscillations as a function of different physical-chemical stimuli. Up to now, we only used the cantilever oscillations variance signal to assess the viability of the attached organisms. In this contribution, we demonstrate that a more precise analysis of the motion pattern of the cantilever can unveil relevant medical information about bacterial phenotype. We used B. pertussis as the model organism, it is a slowly growing Gram-negative bacteria which is the agent of whooping cough. It was previously demonstrated that B. pertussis can expresses different phenotypes as a function of the physical-chemical properties of the environment. In this contribution, we highlight that B. pertussis generates a cantilever movement pattern that depends on its phenotype. More precisely, we noticed that nanometric scale oscillations of B. pertussis can be correlated with the virulence state of the bacteria. The results indicate a correlation between metabolic/virulent bacterial states and bacterial nanomotion pattern and paves the way to novel rapid and label-free pathogenic microorganism detection assays.


2021 ◽  
Author(s):  
Tai-De Li ◽  
Peter Bieling ◽  
Julian Weichsel ◽  
R. Dyche Mullins ◽  
Daniel A Fletcher

Branched actin networks are self-assembling molecular motors that move biological membranes and drive many important cellular processes. Load forces slow the growth and increase the density of these networks, but the molecular mechanisms governing this force response are not well understood. Here we use single-molecule imaging and AFM cantilever deflection to measure how applied forces affect each step in branched actin network assembly. Unexpectedly, force slows the rate of filament nucleation by promoting the interaction of nucleation promoting factors with actin filament ends, limiting branch formation. This inhibition is countered by an even larger force-induced drop in the rate of filament capping, resulting in a shift in the balance between nucleation and capping that increases network density. Remarkably, the force dependence of capping is identical to that of filament elongation because they require the same size gap to appear between the filament and load for insertion. These results provide direct evidence that Brownian Ratchets generate force and govern the load adaptation of branched actin networks.


2021 ◽  
Vol 4 (1) ◽  
pp. 13
Author(s):  
Wujoon Cha ◽  
Matthew F. Campbell ◽  
Akshat Jain ◽  
Igor Bargatin

Since its invention, atomic force microscopy (AFM) has enhanced our understanding of physical and biological systems at sub-micrometer scales [...]


Sign in / Sign up

Export Citation Format

Share Document