Validation protocol of models for centre of mass estimation

1999 ◽  
Vol 32 (6) ◽  
pp. 609-613 ◽  
Author(s):  
M. Rabuffetti ◽  
G. Baroni
2017 ◽  
Vol 231 (5) ◽  
pp. 758-775 ◽  
Author(s):  
Sophie Macaulay ◽  
John R. Hutchinson ◽  
Karl T. Bates

Author(s):  
Firas Massaad ◽  
Frédéric Dierick ◽  
Adélaïde van den Hecke ◽  
Christine Detrembleur

2003 ◽  
Vol 68 (1) ◽  
pp. 178-188 ◽  
Author(s):  
Libor Mrázek ◽  
Ján Žabka ◽  
Zdeněk Dolejšek ◽  
Zdeněk Herman

The beam scattering method was used to investigate non-dissociative single-electron charge transfer between the molecular dication CO22+ and Ar or Ne at several collision energies between 3-10 eV (centre-of-mass, c.m.). Relative translational energy distributions of the product ions showed that in the reaction with Ar the CO2+ product was mainly formed in reactions of the ground state of the dication, CO22+(X3Σg-), leading to the excited states of the product CO2+(A2Πu) and CO2+(B2Σu+). In the reaction with Ne, the largest probability had the process from the reactant dication excited state CO22+(1Σg+) leading to the product ion ground state CO2+(X2Πg). Less probable were processes between the other excited states of the dication CO22+, (1∆g), (1Σu-), (3∆u), also leading to the product ion ground state CO2+(X2Πg). Using the Landau-Zener model of the reaction window, relative populations of the ground and excited states of the dication CO22+ in the reactant beam were roughly estimated as (X3Σg):(1∆g):(1Σg+):(1Σu-):(3∆u) = 1.0:0.6:0.5:0.25:0.25.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Eun Kim ◽  
Jangyun Lee ◽  
Sae Yong Lee ◽  
Hae-Dong Lee ◽  
Jae Kun Shim ◽  
...  

AbstractThe purpose of this study was to investigate how the ball position along the mediolateral (M-L) direction of a golfer causes a chain effect in the ground reaction force, body segment and joint angles, and whole-body centre of mass during the golf swing. Twenty professional golfers were asked to complete five straight shots for each 5 different ball positions along M-L: 4.27 cm (ball diameter), 2.14 cm (ball radius), 0 cm (reference position at preferred ball position), – 2.14 cm, and – 4.27 cm, while their ground reaction force and body segment motions were captured. The dependant variables were calculated at 14 swing events from address to impact, and the differences between the ball positions were evaluated using Statistical Parametric Mapping. The left-sided ball positions at address showed a greater weight distribution on the left foot with a more open shoulder angle compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. These trends disappeared during the backswing and reappeared during the downswing. The whole-body centre of mass was also located towards the target for the left-sided ball positions throughout the golf swing compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. We have concluded that initial ball position at address can cause a series of chain effects throughout the golf swing.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
R. Aaij ◽  
◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
B. Adeva ◽  
...  

Abstract The shape of the $$ {B}_s^0\to {D}_s^{\ast -}{\mu}^{+}{\nu}_{\mu } $$ B s 0 → D s ∗ − μ + ν μ differential decay rate is obtained as a function of the hadron recoil parameter using proton-proton collision data at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb−1 collected by the LHCb detector. The $$ {B}_s^0\to {D}_s^{\ast -}{\mu}^{+}{\nu}_{\mu } $$ B s 0 → D s ∗ − μ + ν μ decay is reconstructed through the decays $$ {D}_s^{\ast -}\to {D}_s^{-}\gamma $$ D s ∗ − → D s − γ and $$ {D}_s^{-}\to {K}^{-}{K}^{+}{\pi}^{-} $$ D s − → K − K + π − . The differential decay rate is fitted with the Caprini-Lellouch-Neubert (CLN) and Boyd-Grinstein-Lebed (BGL) parametrisations of the form factors, and the relevant quantities for both are extracted.


Robotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 96
Author(s):  
Yankai Wang ◽  
Qiaoling Du ◽  
Tianhe Zhang ◽  
Chengze Xue

Hybrid mobile robots with two motion modes of a wheeled vehicle and truss structure with the ability to climb poles have significant flexibility. The motion planning of this kind of robot on a pole has been widely studied, but few studies have focused on the transition of the robot from the ground to the pole. In this study, a locomotion strategy of wheeled-legged pole-climbing robots (the WL_PCR) is proposed to solve the problem of ground-to-pole transition. By analyzing the force of static and dynamic process in the ground-to-pole transition, the condition of torque provided by the gripper and moving joint is proposed. The mathematical expression of Centre of Mass (CoM) of the wheeled-legged pole-climbing robots is utilized, and the conditions for the robot to smoothly transition from the ground to the vertical pole are proposed. Finally, the feasibility of this method is proved by the simulation and experimentation of a locomotion strategy on wheeled-legged pole-climbing robots.


Sign in / Sign up

Export Citation Format

Share Document