Foam counter-current chromatography with the cross-axis synchronous flow-through coil planet centrifuge

1987 ◽  
Vol 403 ◽  
pp. 77-84 ◽  
Author(s):  
Yoichiro Ito
1992 ◽  
Vol 596 (1) ◽  
pp. 118-122 ◽  
Author(s):  
Yoichi Shibusawa ◽  
Yoichiro Ito ◽  
Katsunori Ikewaki ◽  
Daniel J. Rader ◽  
H.Bryan Brewer

2021 ◽  
Vol 112 (11-12) ◽  
pp. 3247-3261
Author(s):  
Zhengjian Wang ◽  
Xichun Luo ◽  
Haitao Liu ◽  
Fei Ding ◽  
Wenlong Chang ◽  
...  

AbstractIn recent years, research has begun to focus on the development of non-resonant elliptical vibration-assisted cutting (EVC) devices, because this technique offers good flexibility in manufacturing a wide range of periodic microstructures with different wavelengths and heights. However, existing non-resonant EVC devices for diamond turning can only operate at relatively low frequencies, which limits their machining efficiencies and attainable microstructures. This paper concerns the design and performance analysis of a non-resonant EVC device to overcome the challenge of low operational frequency. The structural design of the non-resonant EVC device was proposed, adopting the leaf spring flexure hinge (LSFH) and notch hinge prismatic joint (NHPJ) to mitigate the cross-axis coupling of the reciprocating displacements of the diamond tool and to combine them into an elliptical trajectory. Finite element analysis (FEA) using the mapped meshing method was performed to assist the determination of the key dimensional parameters of the flexure hinges in achieving high operational frequency while considering the cross-axis coupling and modal characteristics. The impact of the thickness of the LSFH on the sequence of the vibrational mode shape for the non-resonant EVC device was also quantitatively revealed in this study. Moreover, a reduction in the thickness of the LSFH can reduce the natural frequency of the non-resonant EVC device, thereby influencing the upper limit of its operational frequency. It was also found that a decrease in the neck thickness of the NHPJ can reduce the coupling ratio. Experimental tests were conducted to systematically evaluate the heat generation, cross-axis coupling, modal characteristics and diamond tool’s elliptical trajectory of a prototype of the designed device. The test results showed that it could operate at a high frequency of up to 5 kHz. The cross-axis coupling ratio and heat generation of the prototype are both at an acceptable level. The machining flexibility and accuracy of the device in generating microstructures of different wavelengths and heights through tuning operational frequency and input voltage have also been demonstrated via manufacturing the micro-dimple arrays and two-tier microstructured surfaces. High-precision microstructures were obtained with 1.26% and 10.67% machining errors in wavelength and height, respectively.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 902
Author(s):  
Hussamud Din ◽  
Faisal Iqbal ◽  
Byeungleul Lee

In this paper, a new design technique is presented to estimate and reduce the cross-axis sensitivity (CAS) in a single-drive multi-axis microelectromechanical systems (MEMS) gyroscope. A simplified single-drive multi-axis MEMS gyroscope, based on a mode-split approach, was analyzed for cross-axis sensitivity using COMSOL Multiphysics. A design technique named the “ratio-matching method” of drive displacement amplitudes and sense frequency differences ratios was proposed to reduce the cross-axis sensitivity. Initially, the cross-axis sensitivities in the designed gyroscope for x and y-axis were calculated to be 0.482% and 0.120%, respectively, having an average CAS of 0.301%. Using the proposed ratio-matching method and design technique, the individual cross-axis sensitivities in the designed gyroscope for x and y-axis were reduced to 0.018% and 0.073%, respectively. While the average CAS was reduced to 0.045%, showing a reduction rate of 85.1%. Moreover, the proposed ratio-matching method for cross-axis sensitivity reduction was successfully validated through simulations by varying the coupling spring position and sense frequency difference variation analyses. Furthermore, the proposed methodology was verified experimentally using fabricated single-drive multi-axis gyroscope.


Author(s):  
Farhan Ahmed

This article shows the thermally developing flow through concentric pipes annular sector duct by describing the Darcy Brinkman flow field. The cross sectional convection-diffusion terms are transformed in power law discretized form by integrating over the differential volume, whereas backward difference scheme is used in the axial direction of heat flow. With the help of semi implicit method for pressure linked equations-revised ( SIMPLE-R), we get the solution of the governing problem. The graphs of velocity profiles against R and average Nusselt number against axial distance are plotted for different values of Darcy number and geometrical configuration parameters. It has been pointed out that velocity and thermal entrance length decrease, when we decrease the value of Darcy number. By decreasing the cross section of the concentric pipes annular sector duct in the transverse direction, thermally fully developed flow region develops earlier.


Sign in / Sign up

Export Citation Format

Share Document