X-ray diffraction studies of potassium dihydrogen phosphate (KDP) crystal surfaces

1999 ◽  
Vol 205 (1-2) ◽  
pp. 202-214 ◽  
Author(s):  
S.A. de Vries ◽  
P. Goedtkindt ◽  
W.J. Huisman ◽  
M.J. Zwanenburg ◽  
R. Feidenhans'l ◽  
...  
2001 ◽  
Vol 8 (1) ◽  
pp. 56-80 ◽  
Author(s):  
Mark Engelhard ◽  
Cheryl Evans ◽  
T. A. Land ◽  
A. J. Nelson

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Subramanian Natarajan ◽  
Kalimuthu Moovendaran ◽  
Jeyaperumal Kalyana Sundar ◽  
Krishnan Ravikumar

A new nonlinear optical organic compound, namely, L-histidinium 2-nitrobenzoate (abbreviated as LH2NB (I); ([C6H10N3O2]+ [C7H4NO4]−)), was synthesized. The molecular structure of LH2NB (I) was elucidated using single crystal X-ray diffraction technique. The second harmonic generation (SHG) efficiency of this compound is about two times that of the standard potassium dihydrogen phosphate crystals.


2020 ◽  
Vol 8 (4) ◽  
pp. 447-456
Author(s):  
Yong Zhang ◽  
Ning Hou ◽  
Liang-Chi Zhang ◽  
Qi Wang

AbstractPotassium dihydrogen phosphate (KDP) crystals are widely used in laser ignition facilities as optical switching and frequency conversion components. These crystals are soft, brittle, and sensitive to external conditions (e.g., humidity, temperature, and applied stress). Hence, conventional characterization methods, such as transmission electron microscopy, cannot be used to study the mechanisms of material deformation. Nevertheless, understanding the mechanism of plastic-brittle transition in KDP crystals is important to prevent the fracture damage during the machining process. This study explores the plastic deformation and brittle fracture mechanisms of KDP crystals through nanoindentation experiments and theoretical calculations. The results show that dislocation nucleation and propagation are the main mechanisms of plastic deformation in KDP crystals, and dislocation pileup leads to brittle fracture during nanoindentation. Nanoindentation experiments using various indenters indicate that the external stress fields influence the plastic deformation of KDP crystals, and plastic deformation and brittle fracture are related to the material’s anisotropy. However, the effect of loading rate on the KDP crystal deformation is practically negligible. The results of this research provide important information on reducing machining-induced damage and further improving the optical performance of KDP crystal components.


2018 ◽  
Vol 8 (4) ◽  
pp. 1012 ◽  
Author(s):  
Wei Gao ◽  
Lili Wang ◽  
Lunfu Tian ◽  
Pengfei Sun ◽  
Hui Dong ◽  
...  

2009 ◽  
Vol 23 (09) ◽  
pp. 1221-1227
Author(s):  
K. SELVARAJU ◽  
K. KIRUBAVATHI ◽  
S. KUMARARAMAN

Single crystals of 2-Naphthalenol (2N), new organic nonlinear optical (NLO) material, have been grown by slow evaporation solution growth technique at room temperature. The crystal system has been confirmed from the single crystal X-ray diffraction analysis. The functional groups were identified using FTIR spectroscopy. UV-vis-NIR spectrum showed absence of absorption in the wavelength region 400–1400 nm. The second harmonic generation efficiency is two times higher than that of standard potassium dihydrogen phosphate (KDP).


Sign in / Sign up

Export Citation Format

Share Document